Interactive Learning of Bayesian Networks

Andrés Masegosa, Serafín Moral

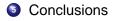
Department of Computer Science and Artificial Intelligence - University of

Granada andrew@decsai.ugr.es

Utrecht, July 2012

Outline

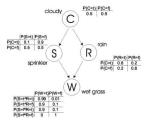
- 2 The Bayesian Framework
- Interactive integration of expert knowledge for model selection
- Applications:
 - Learning the parent set of a variable in BN.
 - Learning Markov Boundaries.
 - Learning complete Bayesian Networks.



Outline

2 The Bayesian Framework

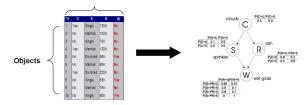
Bayesian Networks



Bayesian Networks

- Excellent models to graphically represent the dependency structure (Markov Condition and d-separation) of the underlying distribution in multivariate domain problems: very relevant source of knowledge.
- Inference tasks: compute marginal, evidence propagation, abductive-inductive reasoning, etc.

Learning Bayesian Networks from Data



Attributes

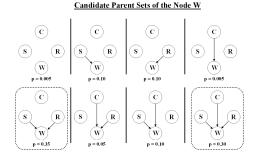
Learning Algorithms

 Learning Bayesian networks from data is quite challenging: the DAG space is super-exponential.

There usually are several models with explain the data similarly well.

• Bayesian framework: high posterior probability given the data.

Learning Bayesian Networks from Data



Uncertainty in Model Selection

This situation is specially common in problem domains with high number of variables and low sample sizes.

Integration of Domain/Expert Knowledge

Integration of Domain/Expert Knowledge

 Find the best statistical model by the combination of data and expert/domain knowledge.

Integration of Domain/Expert Knowledge

Integration of Domain/Expert Knowledge

- Find the best statistical model by the **combination of data and expert/domain knowledge**.
- Emerging approach in gene expression data mining:
 - There is a growing number of biological knowledge data bases.
 - The model space is usually huge and the number of samples is low (costly to collect).
 - Many approaches have shifted from begin pure data-oriented to try to include domain knowledge.

Integration of Expert Knowledge

Previous Works

- There have been many attempts to introduce expert knowledge when learning BNs from data.
- Via Prior Distribution: Use of specific prior distributions over the possible graph structures to integrate expert knowledge:
 - Expert assigns higher prior probabilities to most likely edges.

Integration of Expert Knowledge

Previous Works

- There have been many attempts to introduce expert knowledge when learning BNs from data.
- Via Prior Distribution: Use of specific prior distributions over the possible graph structures to integrate expert knowledge:
 - Expert assigns higher prior probabilities to most likely edges.
- Via structural Restrictions: Expert codify his/her knowledge as structural restrictions.
 - Expert defines the existence/absence of arcs and/or edges and causal ordering restrictions.
 - Retrieved model should satisfy these restrictions.

Integration of Domain/Expert Knowledge

• Limitations of "Prior" Expert Knowledge:

 We are forced to include expert/domain knowledge for each of the elements of the models (e.g. for every possible edge of a BN).

Integration of Domain/Expert Knowledge

• Limitations of "Prior" Expert Knowledge:

- We are forced to include expert/domain knowledge for each of the elements of the models (e.g. for every possible edge of a BN).
- Expert could **be biased to provided the "clearest" knowledge**, which could be the easiest to be find in the data.

Integration of Domain/Expert Knowledge

• Limitations of "Prior" Expert Knowledge:

- We are forced to include expert/domain knowledge for each of the elements of the models (e.g. for every possible edge of a BN).
- Expert could **be biased to provided the "clearest" knowledge**, which could be the easiest to be find in the data.
- The system does not help to the user to introduce information about the BN structure.

Integration of Domain/Expert Knowledge

Interactive Integration of Expert Knowledge

- Data is firstly analyzed.
- The system only inquires to the expert about **most uncertain** elements considering the information present in the data.

Integration of Domain/Expert Knowledge

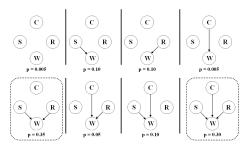
Interactive Integration of Expert Knowledge

- Data is firstly analyzed.
- The system only inquires to the expert about **most uncertain** elements considering the information present in the data.

Benefits:

- Expert is only asked a smaller number of times.
- We **explicitly show to the expert** which are the elements about which data do not provide enough evidence to make a reliable model selection.

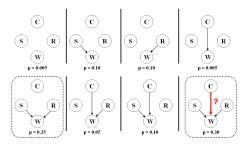
Integration of Domain/Expert Knowledge



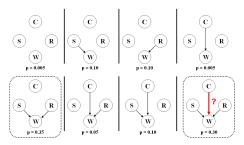
Candidate Parent Sets of the Node W

Integration of Domain/Expert Knowledge

Candidate Parent Sets of the Node W



Integration of Domain/Expert Knowledge



Active Interaction with the Expert

- Strategy: Ask to the expert by the presence of the edges that most reduce the model uncertainty.
- Method: Framework to allow an efficient and effective interaction with the expert.
 - Expert is only asked for this controversial structural features.

Outline

Motivation

Notation

Let us denote by X = (X₁,...,X_n) a vector of random variables and by D a fully observed set of instances x = (x₁,...,x_n) ∈ Val(X).

Motivation

Notation

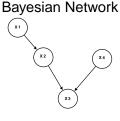
- Let us denote by X = (X₁,..., X_n) a vector of random variables and by D a fully observed set of instances x = (x₁,..., x_n) ∈ Val(X).
- Let be **M** a model and \mathcal{M} the set of all possible models. **M** may define:
 - Joint probability distribution: *P*(**X**|**M**) in the case of a Bayesian network.
 - Conditional probability distribution for target variable: $P(T|\mathbf{X}, \mathbf{M})$ in the case of a Markov Blanket.

Examples of Models

- Each model **M** is structured:
 - It is defined by a vector of elements **M** = (m₁,...,m_K) where K is the number of possible components of **M**.

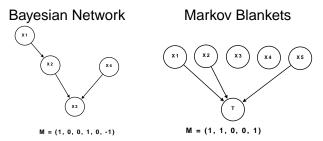
Examples of Models

- Each model **M** is structured:
 - It is defined by a vector of elements M = (m₁,..., m_K) where K is the number of possible components of M.
- Examples:



Examples of Models

- Each model **M** is structured:
 - It is defined by a vector of elements $\mathbf{M} = (m_1, ..., m_K)$ where K is the number of possible components of \mathbf{M} .
- Examples:



The Model Selection Problem: Bayesian Framework

- Define a prior probability over the space of alternative models P(M).
 - It is not the classic uniform prior (the multplicity problem).

The Model Selection Problem: Bayesian Framework

- Define a prior probability over the space of alternative models P(M).
 - It is not the classic uniform prior (the multplicity problem).
- For each model, it is computed its **Bayesian score**:

 $score(\mathbf{M}|D) = P(D|\mathbf{M})P(\mathbf{M})$

where $P(D|\mathbf{M}) = \int_{\theta} P(D|\theta, \mathbf{M}) P(\theta|M)$ is the marginal likelihood of the model.

Benefits of the full Bayesian approach

 We assume that we are able to approximate the posterior by means of any Monte Carlo method:

$$P(\mathbf{M}|D) = rac{P(D|\mathbf{M})P(\mathbf{M})}{\sum_{\mathbf{M}' \in \mathit{Val}(\mathcal{M})} P(D|\mathbf{M}')P(\mathbf{M}')}$$

Benefits of the full Bayesian approach

• We assume that we are **able to approximate the posterior** by means of any **Monte Carlo method**:

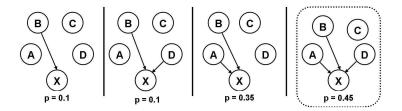
$$m{P}(m{\mathsf{M}}|m{D}) = rac{P(D|m{\mathsf{M}})P(m{\mathsf{M}})}{\sum_{m{\mathsf{M}}'\in \mathit{Val}(\mathcal{M})}P(D|m{\mathsf{M}}')P(m{\mathsf{M}}')}$$

• We can compute the **posterior probability of any of the** elements of a model:

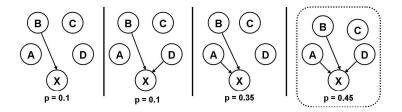
$$P(m_i|D) = \sum_{\mathbf{M}} P(\mathbf{M}|D) I_{\mathbf{M}}(m_i)$$

where $I_{\mathbf{M}}(m_i)$ is the indicator function: 1 if m_i is present in **M** and 0 otherwise.

Examples

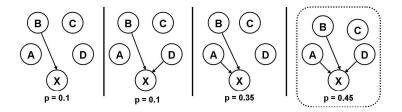


Examples



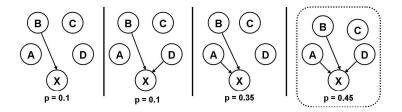
• High Probable Edges: $P(B \rightarrow X|D) = 1.0$ and $P(A \rightarrow X|D) = 0.8$

Examples



- High Probable Edges: $P(B \rightarrow X|D) = 1.0$ and $P(A \rightarrow X|D) = 0.8$
- Low Probable Edges: $P(C \rightarrow X|D) = 0.0$

Examples



- High Probable Edges: $P(B \rightarrow X|D) = 1.0$ and $P(A \rightarrow X|D) = 0.8$
- Low Probable Edges: $P(C \rightarrow X|D) = 0.0$
- Uncertain Edges: $P(D \rightarrow X|D) = 0.55$

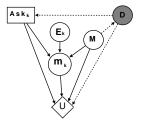
Outline

Interaction with of Expert/Domain Knowledge

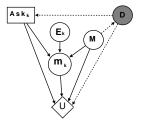
Interactive Integration of of Domain/Expert Knowledge:

- Expert/Domain Knowledge is given for particular elements *m_k* of the the models **M**:
 - If a variable is present or not in the final variable selection.
 - If there is an edge between any two variables in a BN.
- Expert/Domain Knowledge may be **not fully reliable**.

Our Approach for Expert Interaction



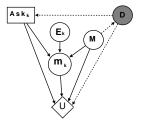
Our Approach for Expert Interaction



• *E* represents **expert reliability**: $\Omega(E) = \{Right, Wrong\}$.

• If expert is wrong we assume a random answer.

Our Approach for Expert Interaction



• *E* represents **expert reliability**: $\Omega(E) = \{Right, Wrong\}$.

• If expert is wrong we assume a random answer.

• Our goal is to infer model structure:

$$U(Ask_k, m_k, M, D) = logP(M|m_k, Ask_k, D)$$

Our Approach for Expert Interaction

Our Approach for Expert Interaction

• The expected utility of asking and not-asking is:

$$V(Ask_k) = \sum_{m_k} \sum_{M} P(M|D) P(m_k|M, Ask_k, D) log P(M|m_k, Ask_k, D)$$

Our Approach for Expert Interaction

• The expected utility of asking and not-asking is:

$$V(Ask_k) = \sum_{m_k} \sum_{M} P(M|D) P(m_k|M, Ask_k, D) log P(M|m_k, Ask_k, D)$$

$$V(\overline{Ask}_k) = \sum_M P(M|D) \log P(M|D)$$

Our Approach for Expert Interaction

The expected utility of asking and not-asking is:

$$V(Ask_k) = \sum_{m_k} \sum_{M} P(M|D)P(m_k|M, Ask_k, D) logP(M|m_k, Ask_k, D)$$

$$V(\overline{Ask}_k) = \sum_M P(M|D) \log P(M|D)$$

The difference between both actions, V(Ask_k) – V(Ask_k), is the information gain function:

$$IG(M:m_k|D) = H(M|D) - \sum_{m_k} P(m_k|D)H(M|m_k,D)$$

Our Approach for Expert Interaction

The expected utility of asking and not-asking is:

$$V(Ask_k) = \sum_{m_k} \sum_{M} P(M|D)P(m_k|M, Ask_k, D) logP(M|m_k, Ask_k, D)$$

$$V(\overline{Ask}_k) = \sum_M P(M|D) \log P(M|D)$$

The difference between both actions, V(Ask_k) – V(Ask_k), is the information gain function:

$$IG(M:m_k|D) = H(M|D) - \sum_{m_k} P(m_k|D)H(M|m_k,D)$$

It can be shown that the element with the highest information gain is the one with highest entropy:

$$m_k^{\star} = \max_k IG(M:m_k|D) = \max_k H(m_k|D) - H(E_k)$$

Our Approach for Expert Interaction

Operation Approximate $P(\mathcal{M}|D)$ by means of a MC technique.

- **O Approximate** $P(\mathcal{M}|D)$ by means of a MC technique.
- Ask the expert about the element m_k with the highest entropy.
 a = a \cup a(m_k).

- **O Approximate** $P(\mathcal{M}|D)$ by means of a MC technique.
- Ask the expert about the element m_k with the highest entropy.
 a = a \cup a(m_k).
 - Update $P(\mathcal{M}|D, \mathbf{a})$, which is equivalent to:

 $\textit{P}(\mathcal{M}|\textit{D}, \textit{a}) \propto \textit{P}(\textit{D}|\mathcal{M})\textit{P}(\mathcal{M}|\textit{a})$

- **O Approximate** $P(\mathcal{M}|D)$ by means of a MC technique.
- Ask the expert about the element m_k with the highest entropy.
 a = a \cup a(m_k).
 - Update $P(\mathcal{M}|D, \mathbf{a})$, which is equivalent to:

 $P(\mathcal{M}|D, \mathbf{a}) \propto P(D|\mathcal{M})P(\mathcal{M}|\mathbf{a})$

Stop Condition: $H(m_k|D, \mathbf{a}) < \lambda$.

- **O Approximate** $P(\mathcal{M}|D)$ by means of a MC technique.
- Ask the expert about the element m_k with the highest entropy.
 a = a \cup a(m_k).
 - Update $P(\mathcal{M}|D, \mathbf{a})$, which is equivalent to:

 $P(\mathcal{M}|D, \mathbf{a}) \propto P(D|\mathcal{M})P(\mathcal{M}|\mathbf{a})$

Stop Condition: $H(m_k|D, \mathbf{a}) < \lambda$.

Otherwise:

• **Option 1:** Go to Step 2 and ask to the expert again.

- **O Approximate** $P(\mathcal{M}|D)$ by means of a MC technique.
- Ask the expert about the element m_k with the highest entropy.
 a = a \cup a(m_k).
 - Update $P(\mathcal{M}|D, \mathbf{a})$, which is equivalent to:

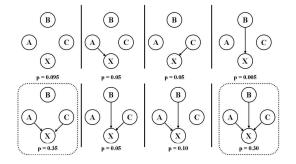
 $P(\mathcal{M}|D, \mathbf{a}) \propto P(D|\mathcal{M})P(\mathcal{M}|\mathbf{a})$

Stop Condition: $H(m_k|D, \mathbf{a}) < \lambda$.

Otherwise:

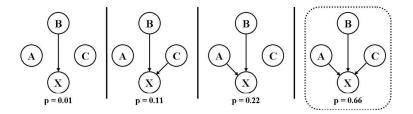
- Option 1: Go to Step 2 and ask to the expert again.
- **Option 2:** Go to Step 1 and sample now using $P(\mathcal{M}|\mathbf{a})$.

Example I



- Probability of the edges:
 - $P(A \rightarrow X|D) = 0.8$
 - $P(B \rightarrow X|D) = 0.455$
 - $P(C \rightarrow X|D) = 0.75$

Example II



• Expert say that $B \rightarrow X$ is present in the model:

- $P(A \rightarrow X|D) = 0.88$
- $P(B \rightarrow X|D) = 1.0$
- $P(C \rightarrow X|D) = 0.77$

 This methodology has been applied to the following model selection problems:

- This methodology has been applied to the following model selection problems:
 - Induce a Bayesian network conditioned to a previously given causal order of the variables.

- This methodology has been applied to the following model selection problems:
 - Induce a Bayesian network conditioned to a previously given causal order of the variables.
 - Induce the **Markov Blanket** of a target variable (Feature Selection).

- This methodology has been applied to the following model selection problems:
 - Induce a Bayesian network conditioned to a previously given causal order of the variables.
 - Induce the **Markov Blanket** of a target variable (Feature Selection).
 - Induce Bayesian Networks without any restriction.

Conclusions

- We have developed a general method for model selection which allow the inclusion of expert knowledge.
- The method is robust even when expert knowledge is wrong.
- The number of interactions is minimized.
- It has been successfully applied to different model selection problems.

Future Works

- Develop a new score to measure the impact of the interaction in model selection.
- Extend this methodology to other probabilistic graphical models.
- Evaluate the impact of the prior over the parameters.
 - Preference among models may change with the parameter prior.
 - Detect the problem and let the user choose.
- Employ alternative ways to introduce expert knowledge:
 - E.g. In BN, we ask about edges: direct causal probabilistic relationships.
 - Many domain knowledge is about correlations and conditional independencies