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The BIG picture

Learning Settings

* Probabilistic Generative Model
BN, Latent Dirichlet Allocation, etc

* Missing Data, Hidden Variables

+ Data samples i.Ld.
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Definitions and Notation

@ Prediction Problem:
@ Y variable to be predicted (discrete, continuous or vector-value).

@ X the predictive variables.
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Definitions and Notation

@ Prediction Problem:
@ Y variable to be predicted (discrete, continuous or vector-value).

@ X the predictive variables.

@ p(y, x|0) in the natural exponential family.

@ Generative Learning (maximum likelihood in a generative model):
@ Givendata D = {(yy,X), ..., (¥n, Xn) } SoOlve the problem

argmin > —Inp(yi, xil6)
(vi-x)eD
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Maximum Likelihood Estimation
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Distribution of the data = (x, y) = n(x|y)=(y):
@ Two classes with equal prior: 7(y = —=1) =n(y =1)=0.5
@ Negative class is Gaussian distributed: 7(x|y = —1) ~ N(0, 3)
@ Positive class is a mixture of Gaussians:
m(x]y =1) ~0.8-N(-5,0.1) +0.2- N(5,0.1)
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Maximum Likelihood Estimation

o
&
o
w
S
=
2 o
2 =
& o
o
©
2 o - =
o AT
-
-
- 1
o | - o
a8 S | B
e I T T T

Generative Learning or Maximum Likelihood:
@ The model to be fitted is p(y, x) assumes p(x|y) is univariate Gaussian.
@ Prediction Accuracy around 78%
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A new look at maximum likelihood estimation
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® % =¥+ I[x == 0]
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A new look at maximum likelihood estimation
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1. Counting...
® 0% = n® + i == 0]
o n,(Jr)1 = n(1) + [x; == 1]

—(0 0
and finally normalize ”5\/) = nE\,)/N.
2. Compute parameters from
countings
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A new look at maximum likelihood estimation
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1. Normalized counting:

@ A, = (1= p)A® + pillx == 0]

© 7, = (1= prl"

where p; = 1

+ pllx; == 1]

2. Compute parameters from
countings

@ 0 =70 /A +A)
@ o /(n(O ()
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A new look at maximum likelihood estimation

@ 79 and A(") can also parameterize P(X|n(® (1))
@ 1-to-1 relation with 6 parameters.
@ They are called the expectation parameters.
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A new look at maximum likelihood estimation

@ 79 and A(") can also parameterize P(X|n(® (1))
@ 1-to-1 relation with 6 parameters.
@ They are called the expectation parameters.

@ Normalized counting is an iterative updating of the expectation parameters:

Ay = (1= p)A® + pil[x; == 0]

@ Compact notation:
Ny = (1 — pe)r + prs(xt)

where s(x) = (/[x == 0], [[x == 1]) is the sufficient statistics function.
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A new look at maximum likelihood estimation

@ After some maths....:

N1 = (1= p)ie + peS(xe)
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A new look at maximum likelihood estimation

@ After some maths....:

N1 = (1= p)ie + peS(xe)
Nt + pt (S(xt) — 7y)
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A new look at maximum likelihood estimation

@ After some maths....:
v = (1= p)ne + pes(xr)
= N+ pr(s(xt) — M)

_ 8Inp(x¢|h
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where J denotes the natural gradient (Riemanian gemotry).
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where J denotes the natural gradient (Riemanian gemotry).

@ ....is equivalent to a stochastic gradient ascent method:
o el s g noisy estimate of the gradient of this function
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A new look at maximum likelihood estimation

@ After some maths....:

N1 = (1= p)ie + peS(xe)
= N+ pr(s(xt) — M)

_ 8Inp(x¢|h
— Byt p 2P
on

where J denotes the natural gradient (Riemanian gemotry).

@ ....is equivalent to a stochastic gradient ascent method:
o el s g noisy estimate of the gradient of this function

fo(R) = > In P(x;|7)

x;€D

@ Stochastic approximation theory guarantees the convergence of the

above iteration if
So=oo Ysf <o
t t
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Discriminative learning

@ The above algorithm also works for other loss functions:

_ _ ey, x|
R (}’%ﬁd )

@ The convergence is guarantee by stochastic approximation theory.
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Discriminative learning

@ The negative conditional log-likelihood,

L(yt, xe|t) = —Inp(yelxt, ir) = —Inp(yt, X¢|Ar) + In p(x¢|ne)
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Discriminative learning

@ The negative conditional log-likelihood,
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Discriminative learning

@ The negative conditional log-likelihood,

L(yt, xe|t) = —Inp(yelxt, ir) = —Inp(yt, X¢|Ar) + In p(x¢|ne)

@ The updating equation:

Nepr = e+ pe (Y xe) — Eyl[s(y, xi)|])

For a naive Bayes classifier, the iteration equations are simply expressed:

A=A + p(1 - ply = 0|x)) it yr==0.

A =" — pip(y = 1Ix) ity ==0.
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Discriminative learning

@ The Hinge or max-margin loss,

p(yt, xt0)

Chinge(Vt, X, 0) = max(0,1 —In "=
hinge (Y1, Xt 0) = max( " oo xe16)

where y; denotes here too the most offending incorrect answer,
Yi = arg maxyy, p(y, xt|6).
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Discriminative learning

@ The Hinge or max-margin loss,

p(yt, xt0)

Oy 0) = 0,1 —In=2
hlnge(YIHXh ) max( n p(yr,Xt\G)

where y; denotes here too the most offending incorrect answer,
Yi = arg maxyy, p(y, xt|6).

@ The updating equation:

) if i PUXd0)

Mg = N+ pe (S, Xe) — S(¥e, xt) o %10)
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Discriminative learning

@ The Hinge or max-margin loss,

p(yt, xt0) ™)

Oy 0) = 0,1 —In=2
hlnge(YIHXh ) max( n p(yr,Xt\G)

where y; denotes here too the most offending incorrect answer,
Yi = arg maxyy, p(y, xt|6).

@ The updating equation:

p(yt, Xt16) <1

o oy f |
Fist e+ pr (s(yt, xt) — (¥, %)) if In p(¥, xt|6)

@ For a naive Bayes classifier, the iteration equations are simply expressed:

Ay = 4 pr-1 ity ==0and In BUAA < 4

AN — R . P(yt:xt]0)
n —pt-1 ify;==0andInZ P x10) <1
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Discriminative learning with hidden variables

@ The p(y,z,x) is in the natural exponential family and s(y, z, x) the suff. stats.
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Discriminative learning with hidden variables

@ The p(y,z,x) is in the natural exponential family and s(y, z, x) the suff. stats.

@ The negative conditional log-likelihood,

Nt = B4 pe(Ez[s(yt, Z, )] — Eyz[s(y, z, x¢)|7e])

@ The Hinge loss:

Nt = Nt + pr (Ez[8(yvt, 2, X0)|Ae] — Ez[s(W, 2, X¢)|7it])
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What is discriminative learning?
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Generative Learning or Maximum Likelihood:
@ The model to be fitted is p(y, x) assumes p(x|y) is univariate Gaussian.
@ Prediction Accuracy around 78%
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What is discriminative learning?

Density
0.10 0.15 0.20
I | |

0.05
L

0.00

Discriminative Learning with the NCLL loss: 90.4% of accuracy
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What is discriminative learning?
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Discriminative Learning with the Hinge Loss: 90.6% of accuracy
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What’s the relationship with EM?

Algorithm 1 Standard EM

1: Choose some 6j;

2:t=0;

3: repeat

4: n=20

5: fori=1,...,Ndo

6: E-Step: nit1 = N + (Ez[s(yi, Z, x)164])
7: endfor

8: n = nN/N

9:  M-Step: 011 = 0(ny);

10: t=t+1,;

11: until convergence
12: return 0(n;);
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What’s the relationship with EM?

Algorithm 2 Standard EM

1: Choose some 6j;

2. t=0;

3: repeat

4. n=0

5. fori=1,...,Ndo

6: E-Step: A = (1= DA+ 1 (Ezls(yi, 2, x7)|64])
7: endfor

8:  M-Step: 0111 = 0(NN);

9. t=t+1;

10: until convergence
11: return o(n;);

UAI 2014 Quebec (Canada)



What’s the relationship with EM?

Algorithm 3 Online EM

Require: D is randomly shuffled.
1: Choose some 6;

2: t=0;

3: ng =

4: repeat

5 for i=1,...,Ndo

6: E-Step: I_7(+1 = (1 — Pt)ﬁt + pt
7: M-Step: Ot11 = 9(?][);

8: t=t+1;

9 end for

10: until convergence
11: return 0(n;);

< (Ez[s(yi, 2, xi) 604])
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What’s the relationship with EM?

Algorithm 4 sdEM with NCLL loss

Require: D is randomly shuffled.
1: Choose some 6;

2: t=0;

3: ng =

4: repeat

5 for i=1,...,Ndo

6 EStepr iy = i+ pr- (Els(yi 2, x)10d — Epels(yi, 2, %)164])
7: M-Step: Ot11 = 9(?][);

8: t=t+1;

9 end for

10: until convergence
11: return 0(n;);
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Some more details about sdEM

@ Employment of a conjugate prior p(6|«)

argmin > 4(yi..0) +1n p(0]o)
(vi,xi)€D

@ Guarantees convergence: In p(6|«) is a log-barrier function.

UAI 2014 Quebec (Canada)



Some more details about sdEM

@ Employment of a conjugate prior p(6|«)

argmin > 4(yi..0) +1n p(0]o)
(vi,xi)€D

@ Guarantees convergence: In p(6|«) is a log-barrier function.
@ Unbiased estimates of the expected sufficient statistics:

Ez[s(yt, 2, x;)10] = ZP(ZWnXt,@)S(}’t,Z Xt)

@ Collapsed Gibbs sampling is OK!.
@ Variational inference provides unbiased estimates. How sdEM would
work?
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Some applications of sdEM

@ Text Classification:

@ Online Discriminative learning of Multinomial NB and LDA.
@ Good results!
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Some applications of sdEM

@ Text Classification:

@ Online Discriminative learning of Multinomial NB and LDA.
@ Good results!

@ Missing Data:

@ Logistic Regression with missing data = sdEM + NB + NCLL loss
@ Linear SVM with missing data = sdEM + NB + Hinge loss

@ Class Noise:

@ Generative modeling of the noise.
@ Discriminative performance.
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sdEM in AMIDST problems

@ Parameter Learning of TAN models:
@ Maximum Likelihood = 1 pass over data for counting.
@ Discriminative learning = 1 or 2 pass over data for counting and classifying.
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sdEM in AMIDST problems

@ Parameter Learning of TAN models:
@ Maximum Likelihood = 1 pass over data for counting.
@ Discriminative learning = 1 or 2 pass over data for counting and classifying.

@ Many (sequence,label) pairs:

@ Set of i.i.d. labelled sequences.
® D= {(y1,81), -, (¥1,8n)}
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sdEM in AMIDST problems

@ Parameter Learning of TAN models:
@ Maximum Likelihood = 1 pass over data for counting.
@ Discriminative learning = 1 or 2 pass over data for counting and classifying.

@ Many (sequence,label) pairs:

@ Set of i.i.d. labelled sequences.
® D= {(y1,81), -, (¥1,8n)}

@ One Sequence of (element,label) pairs:

@ Sequence D = {(y1,e1),....(yr, er)}
@ No Hidden Variables.

@ Hidden Variables?
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