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https://github.com/andresmasegosa/GeiloWinterSchool2018



THE AMIDST CONSORTIUM
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Let	it	burn!
It’s	a	shameful	memory



50 thousands papyrus  = 20 thousands books

3rd century BC 



6 thousand books, 2 millions posts and news 
daily

21st century DC 





Machine Learning



TEXT MODELLING
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Knowledge Access (3rd century BC)



Knowledge Access (21rd century)
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What is Machine 
Learning?
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vs

Manual Computer Programming

WHAT IS MACHINE LEARNING?



vs

Automatic Computer Programming

WHAT IS MACHINE LEARNING?
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Supervised Learning
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SUPERVISED CLASSIFICATION

§ Finding	a	functional	mapping:
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The	mapping	problem	reduces	to	find	the	suitable.						.



SUPERVISED CLASSIFICATION

§ How	do	we	find							?
§ We	learn	it	from	data!
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Machine	learning	involves	solving	continuous	optimization	problems



SUPERVISED LEARNING
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Andrew	Ng:	Artificial	Intelligence	is	the	New	Electricity.	
https://www.youtube.com/watch?v=21EiKfQYZXc&t=1206s

DNN	are	highly	non-linear	mappings



SUPERVISED LEARNING
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Y (Output)		
[Functional	Mapping]

Email

Image

Audio

English

(Corpus, Query)

(Ad, user)

(Camera, Address)

X (Input)		
Spam? (0/1) 

Object (computer vision)

Text (speech recognition)

French(automatic translation)

List (information retrieval)

Click? (Ad Placing)

Steering Angle, Brake 
Force,…. (Autonomous Driving)
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Andrew	Ng:	Artificial	Intelligence	is	the	New	Electricity.	
https://www.youtube.com/watch?v=21EiKfQYZXc&t=1206s



MACHINE LEARNING LANDSCAPE
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http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Function-approximation	Machine	Learning



MACHINE LEARNING LANDSCAPE
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PRACTICAL ISSUES
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§ High Cognitive Burden
§ Daunting number of algorithms and models.

§ Hard to master most of them.

§ Algorithms can not be easily customized.
§ Real A.I. apps require ad-hoc adaptations.
§ Even Harder to adapt/modify existing algorithms. 
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THEORETICAL ISSUES

AMIDST Toolbox

§ Black Box Approaches
§ No Model Interpretability
§ No understanding in how decisions are made

§ Uncertainty Quantification
§ No Predictions Uncertainty
§ No Model Uncertainty
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Probabilistic (Bayesian) 
Machine Learning
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MODEL-BASED MACHINE LEARNING
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Build	a	Model
(Interpretable)

Prior
Knowledge

Bayesian	Learning
(Model	Uncertainty	)

Data

Predictions
(Knowledge	Extraction)

Evaluate	Model
Revise

Blei,	David	M.	"Build,	compute,	critique,	repeat:	Data	analysis	with	latent	variable	
models."	Annual	Review	of	Statistics	and	Its	Application 1	(2014):	203-232.
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Probabilistic Graphical Models

PROBABILISTIC MACHINE LEARNING
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INTELLIGENT FIRE DETECTOR
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Fire Detection from smoke and temperature sensors

§ Data Collected
§ Tons of observations in normal settings (no fire).
§ No observations in the presence of fire.



FIRE DETECTION
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http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Function-approximation	Machine	Learning



FIRE DETECTOR
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Black Box Approach: 
Anomaly Detection with (streaming) K-means



MODEL-BASED MACHINE LEARNING
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Build	a	Model
(Interpretable)

Prior
Knowledge

Bayesian	Learning
(Mode	Uncertainty)

Data

Predictions
(Knowledge	Extraction)

Evaluate	Model
Revise

Blei,	David	M.	"Build,	compute,	critique,	repeat:	Data	analysis	with	latent	variable	
models."	Annual	Review	of	Statistics	and	Its	Application 1	(2014):	203-232.



FIRE DETECTOR MODEL
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Probabilistic Modeling 
Every relevant object is a random variable.

Fire

T1 T2 S1



FIRE DETECTOR MODEL
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Latent Variables
Non-observable relevant mechanisms

Temp

Fire

T1 T2 S1



FIRE DETECTOR MODEL
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Latent Variables
Non-observable relevant mechanisms

Temp Smoke

Fire

T1 T2 S1



FIRE DETECTOR MODEL
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Causal Relationships
They can be extracted for the mechanism itself

Code:	Session3

Temp Smoke

T1 T2 S1

Fire



MODEL-BASED MACHINE LEARNING
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Build	a	Model
(Interpretable)

Prior
Knowledge

Bayesian	Learning
(Model	Uncertainty)

Data

Predictions
(Knowledge	Extraction)

Evaluate	Model
Revise

Blei,	David	M.	"Build,	compute,	critique,	repeat:	Data	analysis	with	latent	variable	
models."	Annual	Review	of	Statistics	and	Its	Application 1	(2014):	203-232.
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Bayesian Learning 

BAYESIAN LEARNING
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MODEL UNCERTAINTY

[Point Estimate]

vs

[Bayesian Estimate]

✓? p(✓|D)

Example: y = ✓0 + ✓1 · x1 + . . .+ ✓k · xk



MODEL-BASED MACHINE LEARNING
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Build	a	Model
(Customized)

Prior
Knowledge

Bayesian	Learning
(Model	Uncertainty)

Data

Predictions
(Knowledge	Extraction)

Evaluate	Model
Revise

Blei,	David	M.	"Build,	compute,	critique,	repeat:	Data	analysis	with	latent	variable	
models."	Annual	Review	of	Statistics	and	Its	Application 1	(2014):	203-232.



FIRE DETECTOR
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Query the Model
Computing posterior probabilities given evidence

Temp Smoke

T1 T2 S1

Fire



MODEL-BASED MACHINE LEARNING
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Build	a	Model
(Interpretable)

Prior
Knowledge

Bayesian	Learning
(Model	Uncertainty)

Data

Predictions
(Knowledge	Extraction)

Evaluate	Model
Revise

Blei,	David	M.	"Build,	compute,	critique,	repeat:	Data	analysis	with	latent	variable	
models."	Annual	Review	of	Statistics	and	Its	Application 1	(2014):	203-232.



EXAMPLE OF PGMS
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What if I have more sensors? 

Fire

Temp Smoke

T1 T2 T3 S1 S2



EXAMPLE OF PGMS
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What if a sensor fails? 

Fire

Temp Smoke

T1 T2 T3 S1 S2

Faulty	
Sensor



EXAMPLE OF PGMS
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What if the system is placed in a 
kitchen?

Fire

Temp Smoke

T1 T2 T3 S1 S2

Cooking

Faulty	
Sensor



EXAMPLE OF PGMS
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What is normal indoor temperature 
changes through the season?

Fire

Temp Smoke

T1 T2 T3 S1 S2

Season Cooking

Faulty	
Sensor



AMIDST APPROACH
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[Big] Data
[+Prior Information]

Knowledge
[+ Predictions]

AMIDST Toolbox

[Scalable] Bayesian Inference Engine
(Powered by Variational Methods)

Openbox Models
[Probabilistic Graphical Models]
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Probabilistic Graphical Models

AMIDST APPROACH

+

Probabilistic Machine Learning
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Thanks for your 
attention

@ contact@amidsttoolbox.com

@AmidstToolbox

www www.amidsttoolbox.com



WHAT ABOUT DEEP LEARNING?

49/32AMIDST Toolbox

DNN	are	highly	non-linear	mappings



DEEP LEARNING
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Andrew	Ng:	Artificial	Intelligence	is	the	New	Electricity.	
https://www.youtube.com/watch?v=21EiKfQYZXc&t=1206s



MACHINE LEARNING

§ Beyond	supervised	classification
§ K-means	clustering’s	loss	function:

§ Dimensionality	Reduction’s	loss	function:

§ Collaborative	Filtering’s	loss	function:

51/32AMIDST Toolbox

Andrew	Ng.	Coursera.	Machine	Learning.	
https://en.coursera.org/learn/machine-learning



STANDARD APPROACH
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Data Predictions

Blackbox Models
(kernel methods, deep learning, ensembles…)

Loss Minimization
(Stochastic Gradient Descent)

AMIDST Toolbox



PROBABILISTIC MACHINE LEARNING
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Data
[+Prior Information]

Knowledge
[+ Predictions]

Openbox Models
[Probabilistic Graphical Models]

AMIDST Toolbox

Black-Box Learning Engine
(Bayesian inference)


