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Data Streams

Data Streams

Most of the generated data is in the form of data stream.

Information processed by the brain is a data stream.

Data streams usually are non-stationary.
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Non-stationary Data Streams

Definition of a Non-stationary Data Stream

We have a collection of time-indexed samples.

{x1, . . . ,xt}

Each xt is usually composed by a bunch of data samples.

The data generating distribution πt(x) changes from one time step to another,

xt ∼ πt(x)
πt(x) 6= πt+1(x)

KL(πt(x)||πt+1(x)) ≤ ε

We do not have i.i.d. data.
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Introduction

Learning from a non-stationary data stream

Problem I: How to handle an endless data set.

Problem II: Training Distribution 6= Test Distribution.

Minimize the empirical loss,

argmin
θ

Eπ̂[`(h(x, θ),y)]

... but my goal is to minimize,

argmin
θ

EπT [`(h(x, θ),y)]

And πT 6= π̂ (π̂ is the empirical distribution of the training data).

A Bayesian approach for modeling non-stationary data streams Introduction 6
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Bayesian modeling of stationary data streams

We assume we have a model for the data.

π(x) ≈ p(x|θ)

... and a prior distribution,

θ ∼ p(θ)

Bayesian recursive updating naturally deals with data stream,

p(θ|x1:t) =
1

Z
p(xt|θ)p(θ|x1:t−1)
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Bayesian modeling of non-stationary data streams

We assume we have a model for the data.

πt(x) ≈ p(x|θt)

... and a parameter transition distribution,

θ1 ∼ p(θ)

θt+1 ∼ p(θ|θt)

Bayesian recursive updating naturally deals with data stream,

p(θt|x1:t) =
1

Z
p(xt|θt)

∫
p(θt|θt−1)p(θt−1|x1:t−1)dθt−1

Standard Bayesian updating is special case when

p(θ|θt) = δ(θ − θt)
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A Bayesian approach to non-stationary data streams

Problem

How to define p(θ|θt−1): problem dependent, conjugate restrictions, etc.

... and how to compute,

p(θt|x1:t) =
1

Z
p(xt|θt)

∫
p(θt|θt−1)p(θt−1|x1:t−1)dθt−1

Literature is full of ad-hoc examples (e.g. Hidden Markov Models, Dynamic LDA
models, etc.)

General Solution

Define a general family of parameter transition distributions.

Integrates easily in (approximate) Bayesian inference methods.
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Implicit Transition Models

Bayesian Updating under Implicit Transition Models

Closed-form solution (up to normalization constant):

p̂t ∝ p(θ|x1:t−1)
ρp(θ)1−ρ

with ρ ∈ [0, 1].

Bayesian updating simplifies to,

p(θ|x1:t, ρ) =
1

Z
p(xt|θ)p(θ|x1:t−1, ρ)

ρp(θ)1−ρ

ρ is a forgetting factor (induced by ε)

ρ = 1 implies standard Bayesian updating.

ρ = 0 implies discard all past data.
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Implicit Transition Models

Bayesian Updating under Implicit Transition Models

The ρ-posterior can be expressed as :

p(θ|x1:T , ρ) =
1

Z
p(θ)

T∏
t=1

p(xt|θ)wt

where wt = ρT−t.

Exponentially down-weight old data samples.
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Exponential Forgetting: Exponential down-weight of old data samples

Connection with Exponential forgetting

The log-posterior equals Exponential Forgetting with a log-loss,

ln p(θ|x1:T , ρ) = ln p(θ) +

T∑
t=1

wt ln p(xt|θ)− lnZ

wt = ρT−t with ρ ∈ [0, 1] being the forgetting factor.

For 0 < ρ < 1, it approximates a sliding window of size,

lim
T→∞

T∑
t=1

wt = lim
T→∞

T∑
t=1

ρT−t =
1

1− ρ

Adaption to non-stationarity by exponentially down-weighting past data
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Variational Inference

Variational Inference tell us that ,

argmax
q

Eq[
∑
t

ln p(xt|θ)]−KL
(
q(θ)||p(θ)

)

is the Bayesian posterior,

q(θ) = p(θ|x1:t) =
1

Z
p(β)

∏
t

p(xt|θ)
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Variational Inference

The ρ-posterior,

p(θ|x1:T , ρ) =
1

Z
p(θ)

∏
t

p(xt|θ)wt

It can be characterized as the one which maximizes,

argmax
q

Eq[
∑
t

wt ln p(xt|θ)]−KL
(
q(θ)||p(θ)

)
where wt = ρT−t.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 17

Novel



Variational Inference

The ρ-posterior,

p(θ|x1:T , ρ) =
1

Z
p(θ)

∏
t

p(xt|θ)wt

It can be characterized as the one which maximizes,

argmax
q

Eq[
∑
t

wt ln p(xt|θ)]−KL
(
q(θ)||p(θ)

)
where wt = ρT−t.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 17

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t =
πT (xt)

π̂(xt)
=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t

=
πT (xt)

π̂(xt)
=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t =
πT (xt)

π̂(xt)

=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t =
πT (xt)

π̂(xt)
=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t =
πT (xt)

π̂(xt)
=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

wt ln p(xt|θ)]−
1

T
KL

(
q(θ)||p(θ)

)

Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

wt = ρT−t =
πT (xt)

π̂(xt)
=
πT (xt)

π̂t(xt)

and,

KL(πt||πt+1) =

∫
πt(x) ln

πt(x)

πt+1(x)
dx = ln

1

ρ

Importance Sampling approach applied by Covariate-Shift methods.

A method to account for the mismatch between training and test distribution.

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 18

Novel



A Covariate-shifted Posterior distribution

The ρ-posterior,

argmax
q

Eq[
1

T

∑
t

πT (xt)

π̂(xt)
ln p(xt|θ)]−

1

T
KL

(
q(θ)||p(θ)

)

aims to maximize,

argmax
q

Eq[EπT [ln p(x|θ)]]−
1

T
KL

(
q(θ)||p(θ)

)
,

it is optimal if supp(πT ) ⊆ supp(π̂).

A Covariate-shifted Posterior distribution.

Implicit Transiton Models

They are generally applicable.

They have a clear interpretation in terms of covariate-shift adaptation.

They can be easily integrated within a variational framework.
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How to choose ρ?

Hierarchical Power Priors (Masegosa et al. 2017)

Bayesian treatment of the forgetting factor ρ.

ρ ∼ TruncatedExponential(γ)

Ad-hoc variational scheme for conjugate exponential models:

argmin
λt

KL
(
q(θ, ρ|λt)||p(θ, ρ|x1, . . . ,xt)

)
Broadly applicable to many models:

Mixture of Gaussians, LDA, Probabilistic PCA, Matrix Factorization, HMM, etc
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Experiments
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How to choose ρ?

Data set Bayesian PVB Fixed Forgetting Rate Our Approach Our Approach
Updating (1) (2) (3) (4) ρ = 0.9 ρ = 0.99 Single ρ Mutiple ρs

Electricity -44.91 -51.01 -52.19 -51.11 -61.70 -43.92 -44.80 -40.05 -40.02
GPS -1.98 -2.10 -2.77 -1.97 -4.49 -1.94 -1.97 -1.97 -1.86
Finance -19.84 -22.29 -22.57 -20.40 -20.73 -19.05 -19.78 -19.83 -19.83
NIPS -4.07 -4.04* -4.21* -4.01 -4.12 -4.02 -4.06 -4.01 -4.00

Table: Aggregated test marginal log-likelihood.

Adaptive forgetting mechanisms are usually needed.

HPP with multiple ρ is the most robust approach.

Non-stationary usually affect only a part of the model.
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LDA over Non-stationary Data Streams
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Future Work
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Future Work

1 Adapt this scheme to Non-Stationary Deep Bayesian Bandits.

Non-linear relationship between the context and the reward.

The reward distribution is non-stationary.

2 Learning deep neural networks from non-stationary data streams.
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