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Introduction

(Ditzler et al. 2015)
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Data Streams

Data Streams
@ Most of the generated data is in the form of data stream.
@ Information processed by the brain is a data stream.

o Data streams usually are non-stationary.
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stationary Data Streams
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Non-stationary Data Streams

Definition of a Non-stationary Data Stream

@ We have a collection of time-indexed samples.

{x1,...,%¢}

(Ditzler et al. 2015)
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Non-stationary Data Streams

Definition of a Non-stationary Data Stream

@ We have a collection of time-indexed samples.
{x1,...,%¢}

@ Each x; is usually composed by a bunch of data samples.

o The data generating distribution 7:(x) changes from one time step to another,

X¢ ~ T (X)

(%) 7# Te41(X)
KL(m(x)||me41(x)) < e

(Ditzler et al. 2015)
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Non-stationary Data Streams

Definition of a Non-stationary Data Stream

@ We have a collection of time-indexed samples.
{x1,...,%¢}

@ Each x; is usually composed by a bunch of data samples.

o The data generating distribution 7:(x) changes from one time step to another,

X¢ ~ T (X)

(%) 7# Te41(X)
KL(m(x)||me41(x)) < e

@ We do not have i.i.d. data.

(Ditzler et al. 2015)
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Introduction

Learning from a non-stationary data stream

@ Problem I: How to handle an endless data set.

(Sugiyama et al. 2007)
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Introduction

Learning from a non-stationary data stream

@ Problem I: How to handle an endless data set.

o Problem II: Training Distribution # Test Distribution.
o Minimize the empirical loss,
arg mginIE;r [¢(h(x,0),y)]
o ... but my goal is to minimize,
arg min Ex [((h(x,0),¥)

o And mp # 7 (7 is the empirical distribution of the training data).

(Sugiyama et al. 2007)
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Bayesian modeling of Non-stationary Data Streams
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Bayesian modeling of stationary data streams

@ We assume we have a model for the data.

m(x) =~ p(x[0)
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Bayesian modeling of stationary data streams

@ We assume we have a model for the data.

m(x) =~ p(x[0)

@ ... and a prior distribution,
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Bayesian modeling of stationary data streams

@ We assume we have a model for the data.

m(x) =~ p(x[0)

@ ... and a prior distribution,

6 ~ p(9)

o Bayesian recursive updating naturally deals with data stream,

p(Ofx1.) = 5 plxi[O)p(6lxr-1)
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(%) ~ p(x|0:)
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Bayesian modeling of non-stationary data streams

@ We assume we have a model for the data.

(%) ~ p(x|0:)

@ ... and a parameter transition distribution,

6 ~ p(0)
041~ p(6]6:)

o Bayesian recursive updating naturally deals with data stream,

1
PlOx1) = p(xil00) / D(0:100—)p(c—1 [120—1)d0s
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Bayesian modeling of non-stationary data streams

@ We assume we have a model for the data.

(%) ~ p(x|0:)

@ ... and a parameter transition distribution,

6 ~ p(0)
041~ p(6]6:)

Bayesian recursive updating naturally deals with data stream,

1
PlOx1) = p(xil00) / D(0:100—)p(c—1 [120—1)d0s

Standard Bayesian updating is special case when

p(0|6:) = 6(6 — 0,)
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A Bayesian approach to non-stationary data streams

@ How to define p(6]6:—1): problem dependent, conjugate restrictions, etc.
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A Bayesian approach to non-stationary data streams

@ How to define p(6]6:—1): problem dependent, conjugate restrictions, etc.

@ ... and how to compute,

1
p(et‘xlrt) = Ep(xtlet)/p(ot|9t—1)p(9t—1|X1:t—1)d9t—1

A Bayesian approach for modeling non-stationary data streams Bayesian modeling of Non-stationary Data Streams 9



A Bayesian approach to non-stationary data streams

@ How to define p(6]6:—1): problem dependent, conjugate restrictions, etc.

@ ... and how to compute,

1
p(et‘xlrt) = Ep(xtlet)/p(ot|9t—1)p(9t—1|X1:t—1)d9t—1

o Literature is full of ad-hoc examples (e.g. Hidden Markov Models, Dynamic LDA
models, etc.)

General Solution

o Define a general family of parameter transition distributions.

o Integrates easily in (approximate) Bayesian inference methods.
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Implicit Transition Models

(Karny, 2014), (Ozkan et al. (2013))
1
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Implicit Transition Models

bt-1
1 —N
P(9t|X1:t) = ZP(XtWt)/p(etwt—l)p(at—l\Xlzt—l)dgt—l

Pt—1
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Implicit Transition Models

Di—1
1
pl6fx1) = plxilh) / p(00)0e1)p(O0—1 [ X101 )1+
\ .

J

h'd

—~_ P

KL(pt||pt—1) < €

" (Karny, 2014), (Ozkan et al. (2013))
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Implicit Transition Models

Dit—1
1
(x:/61) /

p(04]01—1)p(0s—1|x1:6—1)db;—1

J

p(0s[x1:4) = 7P

'

b

pr = arg max H (p)
D

KL(pil|lpe-1) <€

“ (Karny, 2014), (Ozkan et al. (2013))
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Implicit Transition Models

Bayesian Updating under Implicit Transition Models

o Closed-form solution (up to normalization constant):

P o< p(Olx14-1)"p(6)'~°

with p € [0,1].

(Karny, 2014), (Ozkan et al. (2013))
13
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Implicit Transition Models

Bayesian Updating under Implicit Transition Models

o Closed-form solution (up to normalization constant):
P oc p(Blxie—1)"p(6) "

with p € [0, 1].
@ Bayesian updating simplifies to,

p(0lx1:4,0) = (x¢|0)p(0]x1:¢ -1, p) p(0)" 7

2
=P

(Karny, 2014), (Ozkan et al. (2013))
13
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Implicit Transition Models

Bayesian Updating under Implicit Transition Models

o Closed-form solution (up to normalization constant):
P oc p(Blxie—1)"p(6) "

with p € [0,1].

@ Bayesian updating simplifies to,

p(0lx1:4,0) = (x¢|0)p(0]x1:¢ -1, p) p(0)" 7

2

Zp

@ p is a forgetting factor (induced by ¢)
o p =1 implies standard Bayesian updating.

o p = 0 implies discard all past data.

(Karny, 2014), (Ozkan et al. (2013))
13
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Implicit Transition Models
Bayesian Updating under Implicit Transition Models

@ The p-posterior can be expressed as :

pOlxir,p) = p(0) []pGxil6)”

t=1

where wy = pT_t.

Novel
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Implicit Transition Models
Bayesian Updating under Implicit Transition Models

@ The p-posterior can be expressed as :

pOlxir,p) = p(0) []pGxil6)”

t=1

where wy = pT_t.

o Exponentially down-weight old data samples.
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Exponential Forgetting: Exponential down-weight of old data samples

Connection with Exponential forgetting

@ The log-posterior equals Exponential Forgetting with a log-loss,

T
In p(0|x1.7, p) = Inp(0) + Zwt Inp(x¢|0) —InZ

t=1

Novel
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Exponential Forgetting: Exponential down-weight of old data samples

Connection with Exponential forgetting

@ The log-posterior equals Exponential Forgetting with a log-loss,

T
In p(0|x1.7, p) = Inp(0) + Zwt Inp(x¢|0) —InZ

t=1

o w; = pT " with p € [0, 1] being the forgetting factor.

Novel
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Exponential Forgetting: Exponential down-weight of old data samples

Connection with Exponential forgetting

@ The log-posterior equals Exponential Forgetting with a log-loss,

T
In p(0|x1.7, p) = Inp(0) + Zwt Inp(x¢|0) —InZ

t=1

o w; = pT " with p € [0, 1] being the forgetting factor.
e For 0 < p < 1, it approximates a sliding window of size,

T

7
. . T_¢ 1
lim wy = lim p = —
T—o0 T— o0 1-—
=i t=1

p

Novel
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Exponential Forgetting: Exponential down-weight of old data samples

Connection with Exponential forgetting

@ The log-posterior equals Exponential Forgetting with a log-loss,

T
In p(0|x1.7, p) = Inp(0) + Zwt Inp(x¢|0) —InZ

t=1

o w; = pT " with p € [0, 1] being the forgetting factor.
e For 0 < p < 1, it approximates a sliding window of size,

T

T
_ 1
li = I § T—t— _—
Tﬂréot_l“’t TEEOH” 1-p

Adaption to non-stationarity by exponentially down-weighting past data

Novel
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Variational Inference

@ Variational Inference tell us that ,

arg max E, [Z In p(x¢]0)] — K L(q(8)|p(6))

Novel
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Variational Inference

@ Variational Inference tell us that ,

arg max E, [Z In p(x¢]0)] — K L(q(8)|p(6))

@ is the Bayesian posterior,

a(0) = p(6lx1) = 2p(8) [T p(xcl0)

t

Novel
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Variational Inference

o The p-posterior,

p(Olxir, p) = p(0) [ plxel6) ™

Novel
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Variational Inference

o The p-posterior,

p(Olxir, p) = p(0) [ plxel6) ™

t

@ It can be characterized as the one which maximizes,

arg mgmx E, [Z wt lnp(Xt|9)] - KL(‘](G)HP(Q))

where w; = pT ¢,

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

o Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

_ T—t
wt = P

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

o Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

T—t _ 7TT(Xt)
7 (xt)

wt = P

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

o Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

T—t _ 7TT(Xt) _ 7I’T(Xz)
7 (xt) e (xt)

wt = P

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

o Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

T—t _ 7TT(Xt) o 7I’T(Xz)

wt = P

w(xe)  Fe(xe)
° and,
KL(m||me41) = /m(x) In %)(()X)dx = ln%

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max If*]q[l Z we Inp(x¢|0)] — lKL(q(G)Hp(@))
q T T

o Exponential forgetting (and Max-Entropy Implicit Transition Models) assumes,

T—t _ 7TT(Xt) o 7I’T(Xz)

we=p ko) | Fe(xe)
° and,
ﬂ't(X) 1
KL(m¢||me41) = | me(x)1n mdx = ln;

o Importance Sampling approach applied by Covariate-Shift methods.
o A method to account for the mismatch between training and test distribution.

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max Eq[% Zt: WfrT(gzg) In p(x:|6)] — %KL((I(Q)HP(G))

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max Eq[% Zt: WfrT(Ez;) In p(x:|6)] — %KL((I(Q)HP(G))

@ aims to maximize,

arg max By (B (I p(xl0)]) — 7KL (a(0)]|p(6)).

it is optimal if supp(wr) C supp(7).

A Covariate-shifted Posterior distribution.

Novel
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A Covariate-shifted Posterior distribution

@ The p-posterior,

arg max Eq[% Zt: WfrT(Si%) In p(x:|6)] — %KL((I(Q)HP(G))

@ aims to maximize,

arg max Eq[Enp [Inp(x[0)]] - %KL(Q(G’)IIP(@)),

it is optimal if supp(wr) C supp(7).

A Covariate-shifted Posterior distribution.

Implicit Transiton Models

@ They are generally applicable.
@ They have a clear interpretation in terms of covariate-shift adaptation.

@ They can be easily integrated within a variational framework.

Novel

A Bayesian approach for modeling non-stationary data streams Implicit Transition Models 19




How to choose p?

(Masegosa et al. 2017)
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How to choose p?

Hierarchical Power Priors (Masegosa et al. 2017)

o Bayesian treatment of the forgetting factor p.

p ~ TruncatedExponential(vy)
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How to choose p?

Hierarchical Power Priors (Masegosa et al. 2017)

o Bayesian treatment of the forgetting factor p.

p ~ TruncatedExponential(vy)

@ Ad-hoc variational scheme for conjugate exponential models:

arg H}\Itn KL(Q(Ha p|)‘t)||p(97 p‘Xh oo 7xt))

(Masegosa et al. 2017)
2
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How to choose p?

Hierarchical Power Priors (Masegosa et al. 2017)

o Bayesian treatment of the forgetting factor p.

p ~ TruncatedExponential(vy)

@ Ad-hoc variational scheme for conjugate exponential models:

arg H}\Itn KL(Q(Ha p|)‘t)||p(97 p‘Xh oo 7xt))

@ Broadly applicable to many models:
o Mixture of Gaussians, LDA, Probabilistic PCA, Matrix Factorization, HMM, etc

(Masegosa et al. 2017)
2
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Experiments

(Masegosa et al. 2017)
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DATA SET BAYESIAN FIXED FORGETTING RATE OUR APPROACH OUR APPROACH

UPDATING (1) p =10.99 SINGLE p MUTIPLE ps
ELECTRICITY -44.91 -40.05 -40.02
GPS -1.98 -9 -1.97 -1.86
FINANCE -19.84 -22.57 -20.40 -19.83 -19.83
NIPS -4.07 -4.21% -4.01 -4.01 -4.00

Table: Aggregated test marginal log-likelihood.

o Adaptive forgetting mechanisms are usually needed.
o HPP with multiple p is the most robust approach.

@ Non-stationary usually affect only a part of the model.
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stationary Data Streams

Topic Popularity

E s R
£ » §

0 o
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Topic 1 opica opic s Topic 7

Topic 1

network
networks
training
image
learning
layer
input
model
images
output

(Masegosa et al. 2017)
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Future Work

Future Work
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@ Adapt this scheme to Non-Stationary Deep Bayesian Bandits.

o Non-linear relationship between the context and the reward.

o The reward distribution is non-stationary.

A Bayesian approach for modeling non-stationary data streams Future Work 23



@ Adapt this scheme to Non-Stationary Deep Bayesian Bandits.

o Non-linear relationship between the context and the reward.

o The reward distribution is non-stationary.

@ Learning deep neural networks from non-stationary data streams.

A Bayesian approach for modeling non-stationary data streams Future Work 23



	Introduction
	Bayesian modeling of Non-stationary Data Streams
	Implicit Transition Models
	How to choose ?
	Experiments
	Future Work

