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Plan for this week

Day 1: Introduction to probabilistic programming languages
@ Why do we need PPLs?
@ Probabilistic programming in Pyro
@ Hand-on exercises:
o Probability Distributions in Pyro.
o Probabilistic Models in Pyro.

Day 2: Probabilistic Models with Deep Neural Networks
@ Uncertainty in Machine Learning
@ Variational Inference
@ Supervised/Unsupervised Learning
@ Hand-on exercises
o Bayesian Neural Networks
o Variational Auto-encoders
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What is a PPL?
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What is a probabilistic model?

Normal Distribution
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What is a probabilistic model?
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What is a PPL?
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Probabilistic Programming Language (PPL)

@ An attempt to unify probabilistic modeling and general programming languages.
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Probabilistic Programming Language (PPL)

@ An attempt to unify probabilistic modeling and general programming languages.

@ A programming paradigm to define general probabilistic models (mixing
deterministic + stochastic functions).
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Probabilistic Programming Language (PPL)

@ An attempt to unify probabilistic modeling and general programming languages.

@ A programming paradigm to define general probabilistic models (mixing
deterministic + stochastic functions).

o Make probabilistic modeling more applicable and powerful.
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Why PPLs?
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Why do we need PPLs?
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Why do we need PPLs?

@ Reason 1: Try to democratize the development of Al systems.
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Why PPLs?

Infer|Py

Why do we need PPLs?

@ Reason 1: Try to democratize the development of Al systems.

@ Reason 2: Try to make Al systems safer.
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Reason 1: Try to democratize the development of Al systems.
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DARPA’s Fund Call for PPLs in Artificial Intelligence.
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DARPA’s Fund Call for PPLs in Artificial Intelligence.

The development of machine learning systems requires enormous efforts.
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hy PPLs?

Data Science

Math &
Statistics

Traditional
Research

The development of machine learning systems requires enormous efforts.

o It requires of highly qualified experts.
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hy PPLs?
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The development of machine learning applications requires enormous e

o It is necessary to have highly qualified experts

o It is difficult to find the ML model most suitable for an application
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hy PPLs?

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene D:
lley,gholt, dgg, edavydov, toddphil

vydov, Todd Phillips

Google, Inc.
@ Machine
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Feature
: Process
Extraction Management Tools

The development of machine learning applications requires enormous e

@ It is necessary to have highly qualified experts.
o It is difficult to find the ML model most suitable for an application.

o Programming a ML model is a complex task where many problems are
intermingled.
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hy PPLs?

Wanted: Artificial intelligence experts

In artificial intelligence, job openings are rising faster than job seekers.
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Consequences:

@ Shortage of Al experts (and high salaries).
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In artificial intelligence, job openings are rising faster than job seekers.

1,200
e pOStINgS
1,000 Y ol per
million
- (4-week
800 o moving
P average)
. 7
600 i, e searches
m— per
> million
400 (4-week
moving
average)
200
2015 2016 2017 2018

Consequences:

@ Shortage of Al experts (and high salaries).

@ Only big corporations have the resources for developing ML systems.
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Why PPLs?
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Similar situation than 50 years ago:
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o People used to program in low-level programming languages.
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Processing time

Similar situation than 50 years ago:

o People used to program in low-level programming languages.
o Programming was complex and demand high-expertise.

@ Focus on application and low-level hardware details.

Reason 1: Try to democratize the development of Al systems. 11
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hy PPLs?
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o Programmers focused on the applications.
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hy PPLs?

sale_price = 1.66
High level o if (sale_price > 2) {
discount = 0.1
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Processing time

Slow

High-level programming la many advantages:

o Programmers focused on the applications.

o Hardware Experts focused on compilers.
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High-level programming la many advantages:

o Programmers focused on the applications.
o Hardware Experts focused on compilers.

@ High gains in productivity.
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hy PPLs?

sale_price = 1.66
High level o if (sale_price > 2) {
discount = 0.1

}
else {
discount = 0.05

Processing time

Slow

High-level programming la t many advantages:

o Programmers focused on the applications.
o Hardware Experts focused on compilers.
@ High gains in productivity.

o “Democratization” of the software development.
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@ Stacked architecture
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PPLs as high-level programming languages for machine learning systems:

@ Stacked architecture

o Different Domain Experts will code their models using the same language.
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PPLs as high-level programming languages for machine learning systems:

@ Stacked architecture

o Different Domain Experts will code their models using the same language.

@ ML experts will focus on the development of new ML solvers.

@ Compile experts will focus on running these ML solvers on specialized hardware.
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Why PPLs?

Simulation

Probabilistic

Program

Inference

Benefits of PPLs:

@ Simplify machine learning model code.
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Benefits of PPLs:

@ Simplify machine learning model code.

@ Reduce development time and cost to encourage experimentation.
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Benefits of PPLs:

@ Simplify machine learning model code.
@ Reduce development time and cost to encourage experimentation.

o Facilitate the construction of more sophisticated models.
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Benefits of PPLs:

@ Simplify machine learning model code.
@ Reduce development time and cost to encourage experimentation.
o Facilitate the construction of more sophisticated models.

@ Reduce the necessary level of expertise.
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Why PPLs?

Simulation

Probabilistic

Program

Inference

Benefits of PPLs:

@ Simplify machine learning model code.

@ Reduce development time and cost to encourage experimentation.
o Facilitate the construction of more sophisticated models.

@ Reduce the necessary level of expertise.

o “Democratization” of the development of ML systems.
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Reason 2: Try to make Al systems safer
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Today Al

Blackbox Models

(Deep learning)

Data =——p -—> Predictions

Loss Minimization
(Stochastic Gradient Descent)

Deep Learning Based Al Systems :

@ Issue 1: Hard to interpret.
o Issue 2: No possible to know how sure they are in a particular prediction.

@ Enormously limit the application of Al to many real life problems.
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Today Al

Al in Health Care:

o Patients need to know why they are prescribed some treatment.
@ An doctor can supervise the machine (humans in the loop).

o Extensible to any safe-critical system.
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Today Al

Al in Automated Systems:

@ The system should detect when it is in a completely new situation.

@ Let a human take the control.
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Today Task

T * Why did you do that?
Decision or * Why ne ething else?
Training Machine Learned Recommendation * When do you succeed?
Data I+ Learning [+ Ediiction « When do you fail?
Process « When can | trust you?
* How do | correct an error?

User

XAl Task

L * lunderstand why
New * | understand why not
Training " Machine Explainable | Explanation + | know when you succeed
Data Learning Model Interface * I know when you fail
Process * 1 know when to trust you
* | know why you erred

User

Introduction to probabili Reason 2: Try to make Al systems safer 18



XAl: Explainable Al

Today Task

T * Why did you do that?
Decision or * Why ne ething else?
Training Machine Learned Recommendation * When do you succeed?
Data I+ Learning [+ Ediiction « When do you fail?
Process « When can | trust you?
* How do | correct an error?

User

XAl Task

L * lunderstand why
New * | understand why not
Training " Machine Explainable | Explanation + | know when you succeed
Data Learning Model Interface * I know when you fail
Process * 1 know when to trust you
* | know why you erred

User

DARPA'’s Fund Call for XAl projects.
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Explainable Al

Exp1a1nab1e Models

obabilistic Mo ep Learning)

Data —p —p Predictions

[+Prior Information] [+ Uncertainty]

Bayesian Inference Engine
(Powered by Variational Methods)

PPL based Systems :

@ Addressing Issue 1: PPLs provide transparent model description.

@ Addressing Issue 2: PPLs provide uncertainty estimation both in models and
predictions.
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PPLs

Practical

1st Generation of PPLs :

o Bugs, WinBugs, Jags, Figaro, etc.
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PPLs

Practical

1st Generation of PPLs :
o Bugs, WinBugs, Jags, Figaro, etc.

@ Turing-complete probabilistic programming languages. (i.e. they can represent any
computable probability distribution).
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PPLs

Practical

1st Generation of PPLs :
o Bugs, WinBugs, Jags, Figaro, etc.

@ Turing-complete probabilistic programming languages. (i.e. they can represent any
computable probability distribution).

o Inference engine based on Monte Carlo methods.
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PPLs

Practical

1st Generation of PPLs :
o Bugs, WinBugs, Jags, Figaro, etc.

@ Turing-complete probabilistic programming languages. (i.e. they can represent any
computable probability distribution).

o Inference engine based on Monte Carlo methods.

@ They did not scale to large data samples/high-dimensional models.
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2nd Generation of PPLs :

@ Infer.net, Factorie, Amidst, etc.
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2nd Generation of PPLs :

@ Infer.net, Factorie, Amidst, etc.

@ Inference engine based on message passage algorithms and/or variational inference
methods.

Day 1: Introduction to probabilistic programming languages (PPLs) Brief Historical Review of PPLs 21



PPLs

® o
(S S \nipsT

infer.net FACTORIE TOOLBOX

2nd Generation of PPLs :

@ Infer.net, Factorie, Amidst, etc.

@ Inference engine based on message passage algorithms and/or variational inference
methods.

@ They did scale to large data samples/high-dimensional models.
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2nd Generation of PPLs :

@ Infer.net, Factorie, Amidst, etc.

@ Inference engine based on message passage algorithms and/or variational inference
methods.

@ They did scale to large data samples/high-dimensional models.

o Restricted probabilistic model family (i.e. factor graphs, conjuage exponential
family, etc.)
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PPLs

Infer

3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
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PPLs

Infer

3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.

@ Black Box Variational Inference and Hamiltonian Monte-Carlo.
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PPLs
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3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
@ Black Box Variational Inference and Hamiltonian Monte-Carlo.

o They did scale to large data samples/high-dimensional models.
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3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
@ Black Box Variational Inference and Hamiltonian Monte-Carlo.
o They did scale to large data samples/high-dimensional models.

o Turing-complete probabilistic programming languages.
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PPLs
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3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.

o Black Box Variational Inference and Hamiltonian Monte-Carlo.
o They did scale to large data samples/high-dimensional models.
o Turing-complete probabilistic programming languages.

@ Allow the inclusion of deep neural networks.
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PPLs

Infer|Py

3rd Generation of PPLs :

@ TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
@ Black Box Variational Inference and Hamiltonian Monte-Carlo.
o They did scale to large data samples/high-dimensional models.

o Turing-complete probabilistic programming languages.

Allow the inclusion of deep neural networks.

Rely on deep learning frameworks (TensorFlow, Pytorch, Theano, etc).
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www.pyro.ai

Pyro's main features (www.pyro.ai) :

o Developed by UBER (the car riding company).
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www.pyro.ai

Pyro's main features (www.pyro.ai) :

o Developed by UBER (the car riding company).
@ Focus on probabilistic models with deep neural networks.

@ Rely on Pytorch (Deep Learning Framework).
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www.pyro.ai

Pyro's main features (www.pyro.ai) :

Developed by UBER (the car riding company).

Focus on probabilistic models with deep neural networks.

Rely on Pytorch (Deep Learning Framework).

Enable GPU accelaration and distributed learning.
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www.pyro.ai

Pyro at UBER
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Demand Prediction with Pyro:

@ Demand prediction is critical for user experience, resource allocation, etc.
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Pyro at UBER
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Demand Prediction with Pyro:

@ Demand prediction is critical for user experience, resource allocation, etc.

@ LSTM powerful for time series modelling.
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Pyro at UBER
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Demand Prediction with Pyro:

@ Demand prediction is critical for user experience, resource allocation, etc.
@ LSTM powerful for time series modelling.

@ Prediction at special events is challenging: weather, population growth, etc.
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Pyro at UBER
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Demand Prediction with Pyro:

Demand prediction is critical for user experience, resource allocation, etc.

@ LSTM powerful for time series modelling.
@ Prediction at special events is challenging: weather, population growth, etc.

@ Bayesian LSTM provides uncertainty estimation.
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In [3]: normal = dist.Normal(0,1)
normal

Out[3]: Normal(loc: 0.0, scale: 1.0)

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.
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http://docs.pyro.ai/en/stable/distributions.html

MIn [15]: sample = normal.sample()
sample

Out[15]: tensor(0.4908)

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).
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http://docs.pyro.ai/en/stable/distributions.html

In [17]: sample = normal.sample(sample shape=[3,4,5])
sample.shape

Out[17]: torch.Size([3, 4, 5])

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).
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http://docs.pyro.ai/en/stable/distributions.html

In [19]: torch.sum(normal.log prob(sample))

Out[19]: tensor(-85.1003)

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).

@ Operations, like log-likelihood, are defined over tensors (with GPU acceleration
powered by Pytorch).
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http://docs.pyro.ai/en/stable/distributions.html

In [9]: normal = dist.Normal(torch.tensor([1.,2.,3.]),1.)
normal

Out[9]: Normal(loc: torch.Size([3]), scale: torch.Size([3]))

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).

@ Operations, like log-likelihood, are defined over tensors (with GPU acceleration
powered by Pytorch).

e Multiple distributions can be embedded in single object (to define efficient
vectorized operations).
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http://docs.pyro.ai/en/stable/distributions.html

MIn [10]: normal.sample()

Out[10]: tensor([2.0592, 2.4035, 3.1918])

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).

o Operations, like log-likelihood, are defined over tensors (with GPU acceleration
powered by Pytorch).

o Multiple distributions can be embedded in single object (to define efficient
vectorized operations).
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In [11]: normal.log prob(normal.sample())

Out[11l]: tensor([-0.9402, -1.2113, -2.3214])

Pyro's distributions (http://docs.pyro.ai/en/stable/distributions.html) :

@ Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

@ Samples from the distributions are Pytorch's Tensor objects (i.e. multidimensional
arrays).

@ Operations, like log-likelihood, are defined over tensors (with GPU acceleration
powered by Pytorch).

e Multiple distributions can be embedded in single object (to define efficient
vectorized operations).

Day 1: Introduction to probabilistic programming languages (PPLs) Pyro’s Distributions 25


http://docs.pyro.ai/en/stable/distributions.html

Now it is your turn!

Open the Notebook and Play around

@ Test that you have installed the basic packages.
@ Test that you can run the first lines of code.

@ Play a bit with the code in Section 1 of the notebook.

Dayl/students_PPLs_Intro.ipynb

https://github.com/PGM-Lab/ASML-Tbilisi
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MiIn [12]: def model():
temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
return temp

print(model())
print(model()

tensor(12.3926)
tensor(22.5272)

Pyro's models (http://pyro.ai/examples/intro_part_i.html) :

@ A probabilistic model is defined as a stochastic function.
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MiIn [12]: def model():
temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
return temp

print(model())
print(model()

tensor(12.3926)
tensor(22.5272)

Pyro's models (http://pyro.ai/examples/intro_part_i.html) :

@ A probabilistic model is defined as a stochastic function.

@ Each random variable is associated to a primitive stochastic function using the
construct pyro.sample(...).
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MIn [21]: def model():
temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
sensor = pyro.sample( 'sensor’', dist.Normal(temp, 1.0))
return (temp, sensor)

outl = model
outl

Outf21]: (tensor(15.8576), tensor(16.9907))

Pyro’s models (http://pyro.ai/examples/intro_part_i.html) :

@ A stochastic function can be defined as a composition of primitive stochastic
functions.
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MIn [21]: def model():
temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
sensor = pyro.sample( 'sensor’', dist.Normal(temp, 1.0))
return (temp, sensor)

outl = model
outl

Outf21]: (tensor(15.8576), tensor(16.9907))

Pyro’s models (http://pyro.ai/examples/intro_part_i.html) :

@ A stochastic function can be defined as a composition of primitive stochastic
functions.

o We define the joint probability distribution:

p(sensor, temp) = p(sensor|temp)p(temp)
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MIn [22]): #The observatons
obs = {'sensor': torch.tensor(18.0)}

def model(obs):
temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
sensor = pyro.sample( 'sensor', dist.Normal(temp, 1.0),obs=obs['sensor'])

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

@ We can introduce observations (e.g. sensor = 18.0).
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MIn [27): #Run inference
svi(model,guide,obs, plot=True)

i Temperature |Sensor=18.0) = ")
print(dist.Normal(pyro.param(“mean").item(), pyro.param(“scale”).item()))

print("")

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

@ We can introduce observations (e.g. sensor = 18.0).

@ We can query the posterior probability distribution:

p(sensor = 18|temp)p(temp)
J p(sensor = 18|temp)p(temp)dtemp

p(temp|sensor = 18) =

29
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MIn [27): #Run inference
svi(model,guide,obs, plot=True)

i Temperature |Sensor=18.0) = ")
print(dist.Normal(pyro.param(“mean").item(), pyro.param(“scale”).item()))
print("")

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

@ We can introduce observations (e.g. sensor = 18.0).

@ We can query the posterior probability distribution:

p(sensor = 18|temp)p(temp)
J p(sensor = 18|temp)p(temp)dtemp

p(temp|sensor = 18) =

@ Guide is an auxiliary method needed for inference (more details in the coming
sessions).
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P(Temperature|Sensor=18.0) =
Normal(loc: 17.39859390258789, scale: 0.9089401960372925)
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ELBO
250

200

150

loss

100

0 1000 2000 3000 4000 5000
step

P(Temperature|Sensor=18.0) =
Normal(loc: 17.39859390258789, scale: 0.9089401960372925)

Details on the inference method will be given on the following sessions.
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Exercise 1: Change in the precision of the temperature sensor

@ The precision of our temperature sensor is reflected in the variance/scale of
the Normal distribution of the sensor variable.

@ What happens if we get a more precise temperature sensor? Assume it has a
variance/scale equal to 0.5.

Dayl/students_PPLs_Intro.ipynb

https://github.com/PGM-Lab/ASML-Tbilisi
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In [ ): #The observatons
obs = {'sensor': torch.tensor([18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1))}

def model(obs):
for i in range(0,obs[ 'sensor’].shape(0]):
temp = pyro.sample(f'temp {i}', dist.Normal(15.0, 2.0))
sensor = pyro.sample(f'sensor {i}', dist.Normal(temp, 1.0), obs=obs[ 'sensor'][i])

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

o What if we have a bunch of observations, s = {s1,...,sn}
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In [ ): #The observatons
obs = {'sensor': torch.tensor([18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1))}

def model(obs):
for i in range(0,obs[ 'sensor’].shape(0]):
temp = pyro.sample(f'temp {i}', dist.Normal(15.0, 2.0))
sensor = pyro.sample(f'sensor {i}', dist.Normal(temp, 1.0), obs=obs[ 'sensor'][i])

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

o What if we have a bunch of observations, s = {s1,...,sn}

@ A random variable is created for each observation (using a for-loop).
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he observatons
obs = {'sensor': torch.tensor([18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1))}
def model(obs):
for i in range(0,obs[ 'sensor’].shape(0]):
temp = pyro.sample(f'temp {i}', dist.Normal(15.0, 2.0))
sensor = pyro.sample(f'sensor {i}', dist.Normal(temp, 1.0), obs=obs|['sensor'][i])

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

e What if we do not know the average temperature?
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18.7, 19.2,

In [28): # ob s
obs = { torch.tensor([18.,

def model(obs):
mean_temp = pyro.param('mean temp', torch.tensor(15.0))
for i in range(0,obs[ ‘'sensor’']).shape[0]):

temp = pyro.sample(f'temp {i}', dist.Normal(mean_temp, 2.l

sensor = pyro.sample(f'sensor {i}', dist.Normal(temp, + Obs=obs(

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

o What if we do not know the average temperature?

o We can introduce a parameter using pyro.param construct.

Pyro’s Inference

Day 1: Introduction to probabilistic programmi

sensor'][1])
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M 1In [32]): #Run inference
svi(model, guide, obs, num _steps=1000)

#Print results
print("Estimated Mean Temperature")
print(pyro.param("mean_temp").item())

Estimated Mean Temperature
19.129146575927734

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

@ And learn the parameter with the same general inference algorithm.
e = argmjxxlnp(sl, ey Snlp)

o Details about the inference algorithm will be given in the next sessions.
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In [28): # s
obs = { : torch.tensor((18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1)))
def model(obs):
mean_temp = pyro.param('mean_temp', torch.tensor(15.0))
for i in range(0,obs[ 'sensor’].shape[0]):
temp = pyro.sample(f'temp {i}', dist.Normal(mean_temp,
sensor = pyro.sample(f's or _{i}', dist.Normal(temp, 1.

0))
)), obs=obs( 'sensor'][i])

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

o What if we want to capture uncertainty about the estimation of the average
temperature?
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MIn [176): #The observatons
obs = {'sensor': torch.tensor([18., 18.7, 19.2, 17.8, 20.3, 22.4,

def model(obs):
mean_temp
for i in range(obs['s
temp = pyro.sample(f'te

sensor = pyro.sample(f'sensor

2.0))

pyro.sample( 'mean temp’, dist.Normal(l5.0,
).shape[0]):

p_{i}', dist.Normal(mean_temp, 2.0))

{i}', dist.Normal(temp, 1.0), obs=obs['sensor’)[i])

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

o What if we want to capture uncertainty about the estimation of the average

temperature?

@ We can model this parameter with a random variable.

35

Day 1: Introduction to probabilistic programming languages (PPLs) Pyro’s Inference


http://pyro.ai/examples/intro_part_ii.html

In [162]: import time

start ~ time.time()
svi(model, guide, obs, num steps~] )

18.

19.2, 17.8, 20.3, 22 0.3, 21.2, 19.5, 20.1)) )

}oitem()))

or temp|Se [
dist. \ornallpyro paran( “mean ).‘.tc:lll; pyro.param(
E 9354 )

end » time.time()
print(f"{(end - start)} seconds

P(mean_ tenmp|Sensor=(18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1)) =
Normal(loc: 19.199871063232422, scale: 0.6046891212463379)

10.298431873321533 seconds

Pyro's inference (http://pyro.ai/examples/intro_part_ii.html) :

o And learn the distribution with the same general inference algorithm.

p(pels1, . .-, s10)

o Details about the inference algorithm will be given in the next sessions.
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o And learn the distribution with the same general inference algorithm.

p(pels1, . .-, s10)

o Details about the inference algorithm will be given in the next sessions.
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Defining Conditional Independences in Pyro
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MIn [176): #The
obs = {

: torch.tensor([18., 18.7, 19.2, 17.8, 20.3

def model(obs):
mean_temp = pyro.sample('mean temp’', dist.Normal(15.0,

].shape[0]

{i}', dist.Normal(mean temp,

{i}', dist.Normal(temp,

for i in range(obs|[ 'sen
temp = pyro.sample(
sensor = pyro.sample(f'sensor

1.0), obs=obs| 'sensor’)([i])

Pyro's cond. independeces (http://pyro.ai/examples/svi_part_ii.html) :

@ Sensor variables are independent given temperature mean, ;.

10
p(s1,t1, ..y 510, trolpee) = [ [ p(si, tilpe)
=1

37
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: torch.tensor([18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1])}

def model(obs):
mean_temp = pyro.sample('mean temp', dist.Normal(15.0, 2.0))
with pyro.plate('a’, obs['sensor'].shape([0]):

temp = pyro.sample(' p', dist.Normal(mean_temp, 2.0))
sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs|'sensor'])

Pyro's cond. independeces (http://pyro.ai/examples/svi_part_ii.html) :

@ Sensor variables are independent given temperature mean, ;.

10
(51,1, --0s 510, trol i) = [ [ psi il ae)
=1

@ We can use Pyro’s plate construct to introduce this independence.
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In [165]: #5 erence
start = time.time()
svi(model, guide, obs, num steps=1000)

.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1]) =%)

“).item(), pyro.param(“scale”).item()))

print(f*{(end -« start))} seconds”)

P(mean_temp|Sensor=[18., 18.7, 19.2, 17.8, 20.3, 22.4, 20.3, 21.2, 19.5, 20.1]) =
Normal{loc: 19.300748825073242, scale: 0.6379732489585876)

2.81210994720459 seconds

Pyro’s cond. independeces (http://pyro.ai/examples/svi_part_ii.html) :

@ We get large gains in efficiency due to vectorized operations.

o Execution time without plate is over 10s.
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Now it is your turn!

o Exercise 2: The role of the number of observations in learning.

o Exercise 3: The role of the prior distribution in learning.

Dayl/students_PPLs_Intro.ipynb
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Defining Machine Learni
@ We have an ice-cream shop and we record the ice-cream sales and the average
temperature of the day.
o We know temperature affects the sales of ice-creams.

@ We want to precisely find out how temperature affects ice-cream sales.
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s torch.tensor([18., 18.7, 19.2,
‘s torch.tensor([46., 47., 49., 44

def model(obs):
mean_temp = pyro.sample( 'mean_temp', dist.Normal(15.0, 2.0))

with pyro.plate(’'a’', obs|['ser r'].shape(0]):
temp = pyro.sample('temp', dist.Normal(mean_temp, 2.0))
sensor =~ pyro.sample('s r', dist.Normal(temp, 1.0), obswobs|

sensor'])

Ice-cream Shop Model:

@ We have observations from temperature and sales.

Day 1: Introduction to probabilistic programming languages (PPLs) Toy Example: Ice-cream shop
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‘s torch.tensor((l18., 18.7, 19.2,
1 torch.tensor([46., 47., 49., 44.

def model(obs):
mean_temp = pyro.sample( 'mean temp’, dist.Normal(15.0, 2.0))

with pyro.plate('a’, obs|
tenp = pyro.sample(’t
sensor = pyro.sample(
sales = pyro.sample('s

Ice-cream Shop Model:

@ We have observations from temperature and sales.

nsor’ ].shape[0]):

, dist.Normal(mean temp, 2.0))

s dist.Normal(temp, 1.0), obs=obs|
8', dist.Poisson(?7?777), obs=obs[ 'sales

@ Sales are modeled with a Poisson distribution.

Day 1: Introduction to probabilistic programming languages (PPLs) Toy Example: Ice-cream shop i)



MIn [201) #The observa
obs » {'se t torch.tensor((18., 18.7, 19.2, )y v a2}
sales’': torch.tensor((46., 47., 49., 44., 5% Xe ¢ ¢ 99.,
def model(obs):
mean_temp = pyro.sample(’: mp', dist.Normal(l s 2.0))
alpha = pyro.sample('alp ’ d'st Normal(0.0, Aq,.;))
beta = pyro.sample( 'beta’', dist.Normal(0.0, 100.0))
with pyro.plate('a’, obs| 'sensor’').shape[0]):
temp =~ pyro.sample( ' temp’, dist.Normal(mean temp, 2.0))
sensor = pyro.sample( 'sensor’, dist.Normal(temp, 1.0), obs=obs|'sensor
rate = torch.max(torch. tensor( 01), alpha + beta*temp)
sales = pyro.sample( 'sales’, dxst.vo:sson(mte), oba~cbs|[ ‘sales’))

Ice-cream Shop Model:

@ We have observations from temperature and sales.
@ Sales are modeled with a Poisson distribution.

@ The rate of the Poisson linearly depends of the real temperature.

Toy Example: Ice-cream shop 41
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svi(model, guide, obs, num steps~1000)

£ %)

t(dist.Normal (pyro.params( “mean”).item(), pyro.param(“scale”).item()))
t("")

‘Posterior Alpha*)

t(dist.Normal (pyro.param(“alpha mean”).item(), pyro.param({”a
nt("")

t("Posterior Beta")

nt{dist.Normal (pyro.paraa( “beta mean”).item(), pyro.param(“beta scale”).item()))

terior Temperature Me

pha_scale”).item()))

Posterior Temperature Mean
Normal(loc: 19.311052322387695, scale: 0.6258021593093872)

Posterior Alpha
Normal(loc: 19.773971557617188, scale: 1.8541947603225708)

Posterior Beta
Normal(loc: 1.5178951025009155, scale: 0.1155082955956459)

Ice-cream Shop Model:

@ We run the (variational) inference engine and get the results.
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svi(model, guide, obs, num steps~1000)

(dist.Normal (pyro.param(

1" ).item(), pyro.param(“scale”).itea()))

Gt

("Posterior Alpha*)

(dist.Normal (pyro.param(“alpha mean”).item(), pyro.param( pha scale”).item()))
t("")

("B erior Beta")

1t {dist.Normal (pyro.paraa( "beta mean”).item(), pyro.param(“beta scale”).item()))

Posterior Temperature Mean

Normal(loc:

19.311052322387695, scale: 0.6258021593093872)

Posterior Alpha

Normal(loc:

19.773971557617188, scale: 1.8541947603225708)

Posterior Beta

Normal(loc:

1.5178951025009155, scale: 0.1155082955956459)

Ice-cream Shop Model:

@ We run the (variational) inference engine and get the results.

o With PPLs, we only care about modeling, not about the low-level details of the
machine-learning solver.
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Exercise

Exercise 4: Introduce Humidity in the lcecream shop model

@ Assume we also have a bunch of humidity senor measurements.
@ Assume the sales are also linearly influenced by the humidity.

o Extend the above model in order to integrate all of that.
Dayl/students_PPLs_Intro.ipynb
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Plan for this week

Day 1: Introduction to probabilistic programming languages
o Why do we need PPLs?
@ Probabilistic programming in Pyro
@ Hand-on exercises:
o Probability Distributions in Pyro.
o Probabilistic Models in Pyro.
o lce-cream Shop Model.

Day 2: Probabilistic Models with Deep Neural Networks
@ Uncertainty in Machine Learning
@ Variational Inference
@ Supervised/Unsupervised Learning
@ Hand-on exercises
o Bayesian Neural Networks
o Variational Auto-encoders

Day 2: Probabilistic Models with Deep Neural Networks



Uncertainty with Machine Learning
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Uncertainty with Machine Learning

Softmax probability

-1-1-0-1-1-0- R0k
(Louizos et al, 2017)

Why is important to model uncertainty?

@ To assess confidence in the predictions.

@ To know what | don’t know.

o Big implications in many problems.

Day 2: Probabilistic Models with Deep Neural Networks Uncertainty with Machine Learning 3
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Why is important to model uncertainty?

@ To assess confidence in the predictions.
@ To know what | don’t know.

o Big implications in many problems.
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Uncertainty with Machine Learning

Why is important to model uncertainty?
@ To assess confidence in the predictions.
@ To know what | don’t know.

o Big implications in many problems.

Day 2: Probabilistic Models with Deep Neural Networks Uncertainty with Machine Learning 3



certainty with Machine Learning

~ Posternior
Point Estenate

5 1 w 18 19 0

P(Temperature|Sensor=18.0) =
Normal(loc: 17.115509033203125, scale: 0.9070338010787964)

Probabilistic Models naturally quantify uncertainty

o Everything is defined in terms of random variables.

o Standard language to model uncertainty.

Day 2: Probabilistic Models with Deep Neural Networks Uncertainty with Machine Learning 4



Uncertainty with Machine Learning
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(Louizos et al, 2017)

Probabilistic Models naturally quantify uncertainty

@ Everything is defined in terms of random variables.

o Standard language to model uncertainty.
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Example

bilistic Models with Example



Real Data Example

Nunn, N. & Puga, D., Ruggedness: The blessing of bad geography in Africa,
Review of Economics and Statistics 94(1), Feb. 2012

Non African Nations African Nations

Relationship between topographic heterogeneity and GDP per capita

@ Is Terrain ruggedness or bad geography is related to poorer economic performance
outside of Africa?

Day 2: Probabilistic Models with Deep Neural Networks Example 6



Real Data Example

Nunn, N. & Puga, D., Ruggedness: The blessing of bad geography in Africa,
Review of Economics and Statistics 94(1), Feb. 2012

Non African Nations African Nations

Relationship between topographic heterogeneity and GDP per capita

@ Is Terrain ruggedness or bad geography is related to poorer economic performance
outside of Africa?

@ Does rugged terrains have had a reverse effect on income for African nations?

Day 2: Probabilistic Models with Deep Neural Networks Example 6



Linear Regression Model

@ Linear Regression Model:

Yy=wo+wi-x

Day 2: Probabilistic Models with Deep Neural Networks Example 7



Linear Regression Model

@ Linear Regression Model:
Yy=wo+wi-x

@ Mean Square Error Loss:

Day 2: Probabilistic Models with Deep Neural Networks Example 7



Linear Regression Model

@ Linear Regression Model:
Yy=wo+wi-x

@ Mean Square Error Loss:

© Minimization problem (Gradient Descent):

arg mgin L(0)

0" = 0" — VyL(0)

Day 2: Probabilistic Models with Deep Neural Networks Example 7



Linear Regression Model

@ Linear Regression Model:
Yy=wo+wi-x

@ Mean Square Error Loss:

© Minimization problem (Gradient Descent):

arg mgin L(0)

0" = 0" — VyL(0)

Day2/students_Bayesian_regression.ipynb
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Real Data Example

Regression line

Linear Regression Model

o Negative slope for Non African Nations.

@ Positive slope for African Nations.

Day 2: Probabilistic Models with Deep Neural Netw

Example



Real Data Example

Regression line

Linear Regression Model

o Negative slope for Non African Nations.

@ Positive slope for African Nations.

Are we 100% sure about the conclusion?

Day 2: Probabilistic Models with Deep Neural N

Example



Bayesian Machine Learning

Probabilistic Models with Bayesian Machine Learning



Bayesian Linear Regression Model

© Probabilistic Linear Regression Model:

yi\xi,w,UQ ~ N(p = wo + un '3%02)

Day 2: Probabilistic Models with Deep Neural Networks Bayesian Machine Learning 9



Bayesian Linear Regression Model
© Probabilistic Linear Regression Model:
yi\xi,w,UQ ~ ./\/(u = wo + w1 - 3%02)

@ Model Parameters are Random Variables:

wo, w1 ~ N(u= 0,02 = 100)

1
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Bayesian Linear Regression Model
© Probabilistic Linear Regression Model:
yi\xi,w,UQ ~ ./\/(u = wo + w1 - 3%02)
@ Model Parameters are Random Variables:

wo, w1 ~ N(u= 0,02 = 100)
1
@ We compute the posterior (Bayes’ rule):

n o 2 2
p(wo,w1,02|D) — Hi:lp(y’l|x’hw03wlag )p(U)(),U)l,O' )
p(y17 .. '7y7l|x17 oo 7x7l)
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Bayesian Linear Regression Model
© Probabilistic Linear Regression Model:
yi\xi,w,oj ~N(p=wo + wi - 3%02)
@ Model Parameters are Random Variables:
wo, w1 ~ N(u= 0,02 = 100)
1
@ We compute the posterior (Bayes’ rule):

n o 2 2
p('LU(),'lU1,0'2|D) — Hi:lp(y’l|x’hw03wlag )p(U)(),U)l,O' )
p(y17 .. '7y7l|x17 oo 7x7l)

Day2/students_Bayesian_regression.ipynb
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Exercise

Exercise: Bayesian Logistic Regression

@ Predicts whether a country is African or not based on ruggedness and GDP.

Day2/students_Bayesian Regression.ipynb

Day 2: Probabilistic Models with Deep Neural Networks Bayesian Machine Learning 10



Bayesian Inference

@ A probabilistic model is a joint distribution of hidden variables z and observed
variables x ,

p(x,z) = p(x|z)p(z)
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Bayesian Inference

@ A probabilistic model is a joint distribution of hidden variables z and observed
variables x ,

p(x,z) = p(x|z)p(z)

@ Inference about the unknowns is through the posterior, the conditional distribution
of the hidden variables given the observations

p(x|2)p(z)
p(x)
The posterior quantify our uncertainty in the model.

p(zlx) =
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Bayesian Inference

@ A probabilistic model is a joint distribution of hidden variables z and observed
variables x ,

p(x,z) = p(x|z)p(z)

@ Inference about the unknowns is through the posterior, the conditional distribution
of the hidden variables given the observations

p(x|2)p(z)
p(x)
The posterior quantify our uncertainty in the model.

p(zlx) =

@ For most interesting models, the denominator is not tractable.

p(x) = / p(x|2)p(z)dz
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Bayesian Inference

@ A probabilistic model is a joint distribution of hidden variables z and observed
variables x ,

p(x,z) = p(x|z)p(z)

@ Inference about the unknowns is through the posterior, the conditional distribution
of the hidden variables given the observations

p(x|2)p(z)
p(x)
The posterior quantify our uncertainty in the model.

p(zlx) =

@ For most interesting models, the denominator is not tractable.

p(x) = / p(x|2)p(z)dz

We have to use approximate posterior inference.

Day 2: Probabilistic Models with Deep Neural Networks Bayesian Machine Learning 11
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Variational Inference
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Variational Inference

o p(z|x) »
T KL v [ p(z] %)
//q(zzv) IF\
/ \
] e ,‘
\\ pinit /

o Variational Inference is an approximate method,

q(zlv) = p(z[x)

o ¢(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).
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Variational Inference

o p(z|x) »
T KL v [ p(z] %)
//q(zzv) IF\
/ \
] .
‘\ vlnn /“

o Variational Inference is an approximate method,
q(z|v) = p(z|x)
o ¢(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).
o Find the best possible approximation,

v* = argmin KL (q(z]v)|[p(z]x))
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Variational Inference

p(lx)

TN KL v |1 pG1 )
//q(zz v) IF\
“/

\

o Variational Inference is an approximate method,

q(zlv) = p(z[x)

o ¢(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

o Find the best possible approximation,

v* = argmin KL (q(z]v)|[p(z]x))

@ Solve using a optimization algorithm (i.e. gradient descent).

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference 12



Variational Inference

v* = argmin KL (¢(z]v) [p(z]x))

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference 13



Variational Inference

@ Find the best possible approximation,

v" = argmin KL (q(z]u) | |p(z}x))
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Variational Inference

@ Find the best possible approximation,

v" = argmin KL (q(z]u) | |p(z}x))

@ After some manipulations,

Inp(x) = L(v) — KL(q(zlv)||p(zlx))
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Variational Inference

@ Find the best possible approximation,

v" = argmin KL (q(z]u) | |p(z}x))

@ After some manipulations,

Inp(x) = L(v) — KL(q(zlv)||p(zlx))

o L(v) is known as the ELBO function.

Inp(x) > L(v) = Eq[Inp(x|z)] — KL(q(z|v)|Ip(z))
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Variational Inference

[

Find the best possible approximation,

v" = argmin KL (q(z]u) | |p(z}x))

After some manipulations,

Inp(x) = L(v) — KL(q(zlv)||p(zlx))

o L(v) is known as the ELBO function.

Inp(x) > L(v) = Eq[Inp(x|z)] — KL(q(z|v)|Ip(z))

@ The above minimization problem is equivalent to maximize the ELBO function,

v* = argmax L(v)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference 14



Variational Inference

@ Define a tractable approximating variational family,

q(z|v)

o q(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).
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Variational Inference

@ Define a tractable approximating variational family,

q(z|v)

o q(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

@ Solve this maximization problem,

v* = argmax L(v)
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Variational Inference

@ Define a tractable approximating variational family,

q(z|v)

o q(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

@ Solve this maximization problem,

v* = argmax L(v)

@ It can be solved by (stochastic) gradient ascent methods:

D =™ 4 0w, L)
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Variational Inference

@ Define a tractable approximating variational family,

q(z|v)

o q(z|v) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

@ Solve this maximization problem,

v* = argmax L(v)

@ It can be solved by (stochastic) gradient ascent methods:

D =™ 4 0w, L)

@ Use the variational approximation as a proxy,

q(zlv) ~ p(z[x)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference 15



Variational Inference in Pyro

y 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro
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Variational Inference in Pyro

#The observatons
obs = {'sensor': torch.tensor(18.0)}

def model(obs):
temp = pyro.sample('temp’', dist.Normal(15.0, 2.0))
sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])

Pyro's Model

@ We have a probabilistic model,

p(temp) = N(15.0,2.0)
p(sensor|temp) = N (sensor, 2.0)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 16



Variational Inference in Pyro

#The guide
def guide(obs):
= pyro.param('mean", torch.tensor(0.0))

a
b = pyro.param("scale", torch.tensor(l.), constraint=constraints.positive)

temp = pyro.sample('temp', dist.Normal(a, b))

Pyro's Guides

o We want to compute the posterior, p(temp|sensor = 18.0)

o We define, q(temp|v) = N (va,vs)

Variational Inference in Pyro

Day 2: Probabilistic Models with Deep Neural Networks
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Variational Inference in Pyro

#The guide
def guide(obs):
a = pyro.param('mean", torch.tensor(0.0))
b = pyro.param("scale", torch.tensor(l.), constraint=constraints.positive)

temp = pyro.sample('temp', dist.Normal(a, b))
Pyro's Guides
o We want to compute the posterior, p(temp|sensor = 18.0)
o We define, g(temp|v) = N (va,vsp)

@ Guide's requirements:
o Model and Guide have both same input signature.

o All unobserved sample statements in the model must appear in the guide.

Variational Inference in Pyro 17

Day 2: Probabilistic Models with Deep Neural Networks



Variational Inference in Pyro

pyro.clear_param store()

svi = pyro.infer.SVI(model=temperature_model,
guide=guide,
optim=SGD({"1r": 0.001, "momentum”:0.1}),
loss=Trace_ELBO())

for t in range(num_steps):
svi.step(obs)

Pyro's Variational Inference

@ We run optimization to solve,

v* = argmin K L(q(temp|v)||p(temp|sensor = 18.0))

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 18



Variational Inference in Pyro

pyro.clear_param store()

svi = pyro.infer.SVI(model=temperature_model,
guide=guide,
optim=SGD({"1lr": 0.001,

"momentum®:0.1}),
loss=Trace_ELBO())

for t in range(num_steps):
svi.step(obs)

Pyro's Variational Inference

@ We run optimization to solve,
v* = argmin K L(q(temp|v)||p(temp|sensor = 18.0))

o It can be solved by (stochastic) gradient ascent methods:

D =™ 4 v, L)

Day 2: Probabilistic Models with Deep Neural Networks
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Code-task: VB for a simple Gaussian model
Exercise: Pyro implementation for a simple Gaussian model

© Implement a Pyro's model for a Normal distribution with prior over mean and
(inverse) of variance. The variable x is always observed.

p(p) = Normal (0, 10000.0)
p(v) = Gamma(1,1)
p(z | p,v) = Norma(u, 1/7)

@ Define a Pyro's guide for approximating the posterior,

q(p) = Norma(v,,v,2)
a(7) = Gammal(v.,, v5)

Day2/student_simple model.ipynb
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Supervised Learning

§ GIO0ODDD

z
§

Neural Network

@ h(-;0) encodes a neural network (i.e. a non-linear function).

y = h(x;0)

@ Loss minimization,

arg min ; {(h(xi;0),y:)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 20



Supervised Learning

. p(ylh(x:0))

5006

¢

e
1600000 -
§ QOOCOCOO

¥
3
3

Bayesian Neural Network

o E.g. Neural regressor,

p(ylx,0) = N'(n = h(x;0n),0° = g(x;0,))

h(-;0) encodes a neural network.

Variational Inference in Pyro 21
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Supervised Learning
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Bayesian Neural Network

Day 2: Probabilistic Models with Deep Neural Networks
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Supervised Learning
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Bayesian Neural Network

@ Variational Inference,

v = argmin KL(q(01)|lp(fly1, x1,. ., yn, %n))

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 22



Supervised Learning

FoN
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Bayesian Neural Network

@ Variational Inference,

v = argmin KL (q(0[v)|lp(0lyr, x1,- .., yn, Xn))
@ Bayesian predictive is an ensemble of neural networks,
plolx) = [ plulx,0)al6lw)as
4 S pllx6)

05~q(0|V*)
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Supervised Learning

Softmax probability
+

: T3
BEfcz2an
(Louizos et al, 2017)

Bayesian Neural Networks

o Capture the uncertainty.

B
B +
BH 4+ +

o Better identify low confidence predictions (They know what they don’t know).
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Supervised Learning

Softmax probability
+

: =
BEfcz2an
(Louizos et al, 2017)

Bayesian Neural Networks

o Capture the uncertainty.

B
B +
BH 4+ +

o Better identify low confidence predictions (They know what they don’t know).

Day2/BayesianNeuralNetworks.ipynb
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Unsupervised Probabilistic Models with Deep Neural Networks
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Unsupervised Learning

B '\ , encoder
&

p(x[z,0)

Unsepervised Learning with Deep Neural Networks

o No labeled data (extract structure from data).
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Unsupervised Learning

B '\ , encoder
&

p(x[z,0)

Unsepervised Learning with Deep Neural Networks

o No labeled data (extract structure from data).

o A generative model,

z ~ p(z)
x ~ p(x|z,0)
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Unsupervised Learning

)

4
Z o encoder
p(x|z, 0)

Unsepervised Learning with Deep Neural Networks

o No labeled data (extract structure from data).

o A generative model,
z ~ p(z)
x ~ p(x|z,0)

@ Variational Inference,

q(z[x, ¢) ~ p(z|x,0)
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Unsupervised Learning

Unsepervised Learning with Deep Neural Networks

o No labeled data (extract structure from data).

o A generative model,
z ~ p(z)
x ~ p(x]z,0)

@ Variational Inference,
q(z[x, ¢) ~ p(z[x, 0)

Day 2: Probabilistic Models with Deep Neural Networks Unsupervised Probabilistic Models with Deep Neural Networks
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upervised Learning

| Prior distribution: pe(z) |

z-space

1

Encoder: q,(z[x) | | Decoder: pe(x|z)
ry 7

X-space

| Dataset: D

Kingma, D. P.,& Welling, M. (2019). An Introduction to Variational Autoencoders.
arXiv preprint arXiv:1906.02691.
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(White et al. 2016)
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Exercise

Exercise: Bayesian PCA in Pyro

@ VAE using linear transformations.
o Applied to MNIST data set.

Day2/BayesianPCA.ipynb
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Exercise

Exercise: Bayesian PCA in Pyro

@ VAE using linear transformations.
o Applied to MNIST data set.

Day2/BayesianPCA.ipynb

Exercise: Variational Auto-Encoder in Pyro

o VAE using simple neural network.
o Applied to MNIST data set.

Day2/VAE.ipynb
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Conclusions

o Probabilistic modeling is a key aspect in Al systems

o Confidence in model predictions/actions.

e To know what you do not know.
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Conclusions

o Probabilistic modeling is a key aspect in Al systems

o Confidence in model predictions/actions.

e To know what you do not know.

o PPLs are the right tool for probabilistic modeling.

o Enormous expressibility.

o Powerful inference engines (BlackBox Variational Inference).
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End

Infer|Py AMiDST

TOOLBOX

https://inferpy.readthedocs.io http://www.amidsttoolbox.com/

Thanks!!!! :)
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