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Plan for this week

Day 1: Introduction to probabilistic programming languages

Why do we need PPLs?
Probabilistic programming in Pyro
Hand-on exercises:

Probability Distributions in Pyro.
Probabilistic Models in Pyro.

Day 2: Probabilistic Models with Deep Neural Networks

Uncertainty in Machine Learning
Variational Inference
Supervised/Unsupervised Learning
Hand-on exercises

Bayesian Neural Networks
Variational Auto-encoders
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What is a PPL?
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What is a probabilistic model?

Normal Distribution
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What is a probabilistic model?

VQ-VAE-2
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What is a PPL?

Probabilistic Programming Language (PPL)

An attempt to unify probabilistic modeling and general programming languages.

A programming paradigm to define general probabilistic models (mixing

deterministic + stochastic functions).

Make probabilistic modeling more applicable and powerful.
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Why PPLs?
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Why PPLs?

Why do we need PPLs?

Reason 1: Try to democratize the development of AI systems.

Reason 2: Try to make AI systems safer.
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Reason 1: Try to democratize the development of AI systems.
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Why PPLs?

DARPA’s Fund Call for PPLs in Artificial Intelligence.

The development of machine learning systems requires enormous e↵orts.
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Why PPLs?

The development of machine learning systems requires enormous e↵orts.

It requires of highly qualified experts.
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Why PPLs?

The development of machine learning applications requires enormous e↵ort.

It is necessary to have highly qualified experts.

It is di�cult to find the ML model most suitable for an application.
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Why PPLs?

The development of machine learning applications requires enormous e↵ort.

It is necessary to have highly qualified experts.

It is di�cult to find the ML model most suitable for an application.

Programming a ML model is a complex task where many problems are

intermingled.
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Why PPLs?

Consequences:

Shortage of AI experts (and high salaries).

Only big corporations have the resources for developing ML systems.
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Why PPLs?

Similar situation than 50 years ago:

People used to program in low-level programming languages.

Programming was complex and demand high-expertise.

Focus on application and low-level hardware details.
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Why PPLs?

High-level programming languages brought many advantages:

Programmers focused on the applications.

Hardware Experts focused on compilers.

High gains in productivity.

“Democratization” of the software development.
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Why PPLs?

PPLs as high-level programming languages for machine learning systems:

Stacked architecture

Di↵erent Domain Experts will code their models using the same language.

ML experts will focus on the development of new ML solvers.

Compile experts will focus on running these ML solvers on specialized hardware.
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Why PPLs?

Benefits of PPLs:

Simplify machine learning model code.

Reduce development time and cost to encourage experimentation.

Facilitate the construction of more sophisticated models.

Reduce the necessary level of expertise.

“Democratization” of the development of ML systems.
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Reason 2: Try to make AI systems safer

Day 1: Introduction to probabilistic programming languages (PPLs) Reason 2: Try to make AI systems safer 15



Today AI

Deep Learning Based AI Systems :

Issue 1: Hard to interpret.

Issue 2: No possible to know how sure they are in a particular prediction.

Enormously limit the application of AI to many real life problems.
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Today AI

AI in Health Care:

Patients need to know why they are prescribed some treatment.

An doctor can supervise the machine (humans in the loop).

Extensible to any safe-critical system.
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Today AI

AI in Automated Systems:

The system should detect when it is in a completely new situation.

Let a human take the control.
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XAI: Explainable AI

DARPA’s Fund Call for XAI projects.
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Explainable AI

PPL based Systems :

Addressing Issue 1: PPLs provide transparent model description.

Addressing Issue 2: PPLs provide uncertainty estimation both in models and
predictions.
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Brief Historical Review of PPLs
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PPLs

1st Generation of PPLs :

Bugs, WinBugs, Jags, Figaro, etc.

Turing-complete probabilistic programming languages. (i.e. they can represent any
computable probability distribution).

Inference engine based on Monte Carlo methods.

They did not scale to large data samples/high-dimensional models.
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PPLs

2nd Generation of PPLs :

Infer.net, Factorie, Amidst, etc.

Inference engine based on message passage algorithms and/or variational inference
methods.

They did scale to large data samples/high-dimensional models.

Restricted probabilistic model family (i.e. factor graphs, conjuage exponential
family, etc.)
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PPLs

3rd Generation of PPLs :

TensorFlow Probability, Pyro, PyMC3, InferPy, etc.

Black Box Variational Inference and Hamiltonian Monte-Carlo.

They did scale to large data samples/high-dimensional models.

Turing-complete probabilistic programming languages.

Allow the inclusion of deep neural networks.

Rely on deep learning frameworks (TensorFlow, Pytorch, Theano, etc).
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Pyro

Day 1: Introduction to probabilistic programming languages (PPLs) Pyro 23



Pyro

Pyro’s main features (www.pyro.ai) :

Developed by UBER (the car riding company).

Focus on probabilistic models with deep neural networks.

Rely on Pytorch (Deep Learning Framework).

Enable GPU accelaration and distributed learning.
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Pyro at UBER

Demand Prediction with Pyro:

Demand prediction is critical for user experience, resource allocation, etc.

LSTM powerful for time series modelling.

Prediction at special events is challenging: weather, population growth, etc.

Bayesian LSTM provides uncertainty estimation.
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Pyro’s Distributions
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Pyro

Pyro’s distributions (http://docs.pyro.ai/en/stable/distributions.html) :

Wide range of distributions: Normal, Beta, Cauchy, Dirichlet, Gumbel, Poisson,
Pareto, etc.

Samples from the distributions are Pytorch’s Tensor objects (i.e. multidimensional
arrays).

Operations, like log-likelihood, are defined over tensors (with GPU acceleration
powered by Pytorch).

Multiple distributions can be embedded in single object (to define e�cient
vectorized operations).
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Now it is your turn!

Open the Notebook and Play around

Test that you have installed the basic packages.

Test that you can run the first lines of code.

Play a bit with the code in Section 1 of the notebook.

Day1/students PPLs Intro.ipynb

https://github.com/PGM-Lab/ASML-Tbilisi
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Pyro’s Models
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Pyro

Pyro’s models (http://pyro.ai/examples/intro_part_i.html) :

A probabilistic model is defined as a stochastic function.

Each random variable is associated to a primitive stochastic function using the
construct pyro.sample(...).
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Pyro

Pyro’s models (http://pyro.ai/examples/intro_part_i.html) :

A stochastic function can be defined as a composition of primitive stochastic

functions.

We define the joint probability distribution:

p(sensor, temp) = p(sensor|temp)p(temp)
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Pyro’s Inference
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

We can introduce observations (e.g. sensor = 18.0).

We can query the posterior probability distribution:

p(temp|sensor = 18) =

p(sensor = 18|temp)p(temp)R
p(sensor = 18|temp)p(temp)dtemp

Guide is an auxiliary method needed for inference (more details in the coming
sessions).
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Pyro

Details on the inference method will be given on the following sessions.
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Pyro

Exercise 1: Change in the precision of the temperature sensor

The precision of our temperature sensor is reflected in the variance/scale of
the Normal distribution of the sensor variable.

What happens if we get a more precise temperature sensor? Assume it has a
variance/scale equal to 0.5.

Day1/students PPLs Intro.ipynb

https://github.com/PGM-Lab/ASML-Tbilisi
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

What if we have a bunch of observations, s = {s1, . . . , sn}

A random variable is created for each observation (using a for-loop).
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

What if we do not know the average temperature?

We can introduce a parameter using pyro.param construct.
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

And learn the parameter with the same general inference algorithm.

µt = argmax

µ
ln p(s1, . . . , sn|µ)

Details about the inference algorithm will be given in the next sessions.
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

What if we want to capture uncertainty about the estimation of the average

temperature?

We can model this parameter with a random variable.
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Pyro

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

And learn the distribution with the same general inference algorithm.

p(µt|s1, . . . , s10)

Details about the inference algorithm will be given in the next sessions.
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Pyro

f

Pyro’s inference (http://pyro.ai/examples/intro_part_ii.html) :

And learn the distribution with the same general inference algorithm.

p(µt|s1, . . . , s10)

Details about the inference algorithm will be given in the next sessions.
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Defining Conditional Independences in Pyro
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Pyro

Pyro’s cond. independeces (http://pyro.ai/examples/svi_part_ii.html) :

Sensor variables are independent given temperature mean, µt.

p(s1, t1, ..., s10, t10|µt) =

10Y

i=1

p(si, ti|µt)

We can use Pyro’s plate construct to introduce this independence.
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Pyro

Pyro’s cond. independeces (http://pyro.ai/examples/svi_part_ii.html) :

We get large gains in e�ciency due to vectorized operations.

Execution time without plate is over 10s.
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Now it is your turn!

Exercise 2: The role of the number of observations in learning.

Exercise 3: The role of the prior distribution in learning.

Day1/students PPLs Intro.ipynb
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Toy Example: Ice-cream shop
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Toy Example

Defining Machine Learning models with PPLs:

We have an ice-cream shop and we record the ice-cream sales and the average
temperature of the day.

We know temperature a↵ects the sales of ice-creams.

We want to precisely find out how temperature a↵ects ice-cream sales.
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Pyro

Ice-cream Shop Model:

We have observations from temperature and sales.

Sales are modeled with a Poisson distribution.

The rate of the Poisson linearly depends of the real temperature.
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Pyro

Ice-cream Shop Model:

We run the (variational) inference engine and get the results.

With PPLs, we only care about modeling, not about the low-level details of the
machine-learning solver.
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Pyro

Ice-cream Shop Model:

We run the (variational) inference engine and get the results.

With PPLs, we only care about modeling, not about the low-level details of the
machine-learning solver.
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Exercise

Exercise 4: Introduce Humidity in the Icecream shop model

Assume we also have a bunch of humidity senor measurements.

Assume the sales are also linearly influenced by the humidity.

Extend the above model in order to integrate all of that.
Day1/students PPLs Intro.ipynb
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Probabilistic Models with Deep Neural Networks

Andrés Masegosa

Department of Mathematics
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Plan for this week

Day 1: Introduction to probabilistic programming languages

Why do we need PPLs?
Probabilistic programming in Pyro
Hand-on exercises:

Probability Distributions in Pyro.
Probabilistic Models in Pyro.
Ice-cream Shop Model.

Day 2: Probabilistic Models with Deep Neural Networks

Uncertainty in Machine Learning
Variational Inference
Supervised/Unsupervised Learning
Hand-on exercises

Bayesian Neural Networks
Variational Auto-encoders
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Uncertainty with Machine Learning
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Uncertainty with Machine Learning

(Louizos et al, 2017)

Why is important to model uncertainty?

To assess confidence in the predictions.

To know what I don’t know.

Big implications in many problems.
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Uncertainty with Machine Learning

Probabilistic Models naturally quantify uncertainty

Everything is defined in terms of random variables.

Standard language to model uncertainty.
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Uncertainty with Machine Learning

(Louizos et al, 2017)
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Example
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Real Data Example

Nunn, N. & Puga, D., Ruggedness: The blessing of bad geography in Africa,
Review of Economics and Statistics 94(1), Feb. 2012

Relationship between topographic heterogeneity and GDP per capita

Is Terrain ruggedness or bad geography is related to poorer economic performance
outside of Africa?

Does rugged terrains have had a reverse e↵ect on income for African nations?
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Linear Regression Model

1 Linear Regression Model:
y = w0 + w1 · x

2 Mean Square Error Loss:

L(✓) =

nX

i=1

(yi � w0 + w1 · xi)
2

3 Minimization problem (Gradient Descent):

argmin

✓
L(✓)

✓

t+1
= ✓

t �r✓L(✓)

Day2/students Bayesian regression.ipynb
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Real Data Example

Linear Regression Model

Negative slope for Non African Nations.

Positive slope for African Nations.

Are we 100% sure about the conclusion?
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Bayesian Machine Learning
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Bayesian Linear Regression Model

1 Probabilistic Linear Regression Model:

yi|xi,w,�

2 ⇠ N (µ = w0 + w1 · xi,�
2
)

2 Model Parameters are Random Variables:

w0, w1 ⇠ N (µ = 0,�

2
= 100)

1

�

2
⇠ G(↵ = 1,� = 1)

3 We compute the posterior (Bayes’ rule):

p(w0, w1,�
2|D) =

Qn
i=1 p(yi|xi, w0, w1,�

2
)p(w0, w1,�

2
)

p(y1, . . . , yn|x1, . . . , xn)

Day2/students Bayesian regression.ipynb
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Exercise

Exercise: Bayesian Logistic Regression

Predicts whether a country is African or not based on ruggedness and GDP.

Day2/students Bayesian Regression.ipynb
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Bayesian Inference

A probabilistic model is a joint distribution of hidden variables z and observed
variables x ,

p(x, z) = p(x|z)p(z)

Inference about the unknowns is through the posterior, the conditional distribution
of the hidden variables given the observations

p(z|x) = p(x|z)p(z)
p(x)

The posterior quantify our uncertainty in the model.

For most interesting models, the denominator is not tractable.

p(x) =

Z
p(x|z)p(z)dz

We have to use approximate posterior inference.
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Variational Inference
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Variational Inference

Variational Inference is an approximate method,

q(z|⌫) ⇡ p(z|x)

q(z|⌫) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

Find the best possible approximation,

⌫?
= argmin

⌫
KL

�
q(z|⌫)||p(z|x)

�

Solve using a optimization algorithm (i.e. gradient descent).
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Variational Inference
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Variational Inference

Find the best possible approximation,

⌫?
= argmin

⌫
KL

�
q(z|⌫)||p(z|x)

�

After some manipulations,

ln p(x) = L(⌫)�KL

�
q(z|⌫)||p(z|x)

�

L(⌫) is known as the ELBO function.

ln p(x) � L(⌫) = Eq[ln p(x|z)]�KL

�
q(z|⌫)||p(z)

�

The above minimization problem is equivalent to maximize the ELBO function,

⌫?
= argmax

⌫
L(⌫)
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Variational Inference

1 Define a tractable approximating variational family,

q(z|⌫)

q(z|⌫) is a simpler distribution (e.g. diagonal covariance matrix, unimodal).

2 Solve this maximization problem,

⌫?
= argmax

⌫
L(⌫)

3 It can be solved by (stochastic) gradient ascent methods:

⌫(t+1)
= ⌫(t)

+ ↵r⌫L(⌫(t)
)

4 Use the variational approximation as a proxy,

q(z|⌫) ⇡ p(z|x)
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⌫(t+1)
= ⌫(t)

+ ↵r⌫L(⌫(t)
)

4 Use the variational approximation as a proxy,

q(z|⌫) ⇡ p(z|x)
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Variational Inference in Pyro
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Variational Inference in Pyro

Pyro’s Model

We have a probabilistic model,

p(temp) = N (15.0, 2.0)

p(sensor|temp) = N (sensor, 2.0)
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Variational Inference in Pyro

Pyro’s Guides

We want to compute the posterior, p(temp|sensor = 18.0)

We define, q(temp|⌫) = N (⌫a,⌫b)

Guide’s requirements:

Model and Guide have both same input signature.

All unobserved sample statements in the model must appear in the guide.
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Variational Inference in Pyro

Pyro’s Variational Inference

We run optimization to solve,

⌫?
= argmin

⌫
KL

�
q(temp|⌫)||p(temp|sensor = 18.0)

�

It can be solved by (stochastic) gradient ascent methods:

⌫(t+1)
= ⌫(t)

+ ↵r⌫L(⌫(t)
)
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Code-task: VB for a simple Gaussian model

Exercise: Pyro implementation for a simple Gaussian model

1 Implement a Pyro’s model for a Normal distribution with prior over mean and
(inverse) of variance. The variable x is always observed.

p(µ) = Normal(0, 10000.0)

p(�) = Gamma(1, 1)

p(x |µ, �) = Norma(µ, 1/�)

2 Define a Pyro’s guide for approximating the posterior,

q(µ) = Norma(⌫µ,⌫�2)

q(�) = Gammal(⌫↵,⌫�)

Day2/student simple model.ipynb
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Supervised Learning

Neural Network

h(·; ✓) encodes a neural network (i.e. a non-linear function).

y = h(x; ✓)

Loss minimization,

argmin

✓

nX

i=1

`(h(xi; ✓),yi)
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Supervised Learning

Bayesian Neural Network

E.g. Neural regressor,

p(y|x, ✓) = N (µ = h(x; ✓h),�
2
= g(x; ✓g))

h(·; ✓) encodes a neural network.
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Supervised Learning

Bayesian Neural Network

Variational Inference,

⌫?
= argmin

⌫
KL

�
q(✓|⌫)||p(✓|y1,x1, . . . ,yn,xn)

�

Bayesian predictive is an ensemble of neural networks,

p(y|x) =
Z

p(y|x, ✓)q(✓|⌫?
)d✓

⇡ 1

M

X

✓j⇠q(✓|⌫?)

p(y|x, ✓j)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 22



Supervised Learning

Bayesian Neural Network

Variational Inference,

⌫?
= argmin

⌫
KL

�
q(✓|⌫)||p(✓|y1,x1, . . . ,yn,xn)

�

Bayesian predictive is an ensemble of neural networks,

p(y|x) =
Z

p(y|x, ✓)q(✓|⌫?
)d✓

⇡ 1

M

X

✓j⇠q(✓|⌫?)

p(y|x, ✓j)

Day 2: Probabilistic Models with Deep Neural Networks Variational Inference in Pyro 22



Supervised Learning

Bayesian Neural Network

Variational Inference,
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Supervised Learning

(Louizos et al, 2017)

Bayesian Neural Networks

Capture the uncertainty.

Better identify low confidence predictions (They know what they don’t know).

Day2/BayesianNeuralNetworks.ipynb
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Unsupervised Probabilistic Models with Deep Neural Networks
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Unsupervised Learning

p(x|z, ✓) q(z|x,�)

Unsepervised Learning with Deep Neural Networks

No labeled data (extract structure from data).

A generative model,

z ⇠ p(z)

x ⇠ p(x|z, ✓)

Variational Inference,
q(z|x,�) ⇡ p(z|x, ✓)
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Unsupervised Learning

Unsepervised Learning with Deep Neural Networks

No labeled data (extract structure from data).

A generative model,
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Unsupervised Learning

Kingma, D. P.,& Welling, M. (2019). An Introduction to Variational Autoencoders.
arXiv preprint arXiv:1906.02691.
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Unsupervised Learning

(White et al. 2016)
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Exercise

Exercise: Bayesian PCA in Pyro

VAE using linear transformations.

Applied to MNIST data set.

Day2/BayesianPCA.ipynb

Exercise: Variational Auto-Encoder in Pyro

VAE using simple neural network.

Applied to MNIST data set.

Day2/VAE.ipynb
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Conclusions

Probabilistic modeling is a key aspect in AI systems

Confidence in model predictions/actions.

To know what you do not know.

PPLs are the right tool for probabilistic modeling.

Enormous expressibility.

Powerful inference engines (BlackBox Variational Inference).
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End

https://inferpy.readthedocs.io http://www.amidsttoolbox.com/

Thanks!!!!! :)
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