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The learning problem

o Notation:

° is the data generating distribution (unknown).
o p(x|0) is a probabilistic model parametrized by 6.
o VO # p(x0).

@ The predictive posterior distribution for a given p(60),
p) = [ px16)(0)46 = £, p(xI0)]
o The learning problem is defined as,
p" = argmin KL( JE, 0 [p(x|0)]) = argminE, . [In L ]
p p

E, 0 [p(x9)]

CE(p)

Learning from a finite dataset

@ We do not have access to , only to a i.i.d. sample D = {x1,...,%xn}.
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First-order PAC-Bayes bounds

p" =argmin CE(p) = arg min K L( B0 [p(x]0)])
P P
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Jensen
CE(p) < E,)[L(9)]
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The learning strategy is to minimize the PAC-Bayes bound

@ " is the Bayesian posterior for ¢ = 1 (Germain et al. 2016),

p(D|6)7(6)

¢"=p@D) = T Dlgyr@)ae
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Is the Bayesian approach an optimal learning strategy?

o The Bayesian learning strategy,

emsen o~ Bayes KL(p, In $ + ¢ru(c,
CB() B o) L 8 (e, D)) ¢ LT e Ynle )

~
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Is the Bayesian approach an optimal learning strategy?

o The Bayesian learning strategy,

Jensen PAC—Bayes KL , T +1nl +w7\zu c,n
CE(p) < E,0[LO)] <  E,u[LO,D)+ () in e+ drleon)
cn
Jensen bound PAC—Bayes bound

@ The minimum of the Jensen bound is a Dirac-delta distribution centered around,

0L = argmeinKL( ,p(x]0))
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Is the Bayesian approach an optimal learning strategy?

Perfect Model Specification
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Is the Bayesian approach an optimal learning strategy?

Model Misspecification
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CE(p) < E, o [L(8)] — V(p)
[ S
Second—order Jensen bound
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A new learning framework

Minimizing second-order PAC-Bayes bound

@ Variational methods for minimizing second-order PAC-Bayes bounds,

arg minE, o [L(6, D)] — ¥(s, D) + KL(p,m)

PE n

where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).

Bayesian model averaging is suboptimal for generalization First-order PAC-Bayes bounds 10



A new learning framework

Minimizing second-order PAC-Bayes bound

@ Variational methods for minimizing second-order PAC-Bayes bounds,

argminE, ; [L(6, D)) — ¥(p, D) + Z LT

where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).

Variational Inference

o Standard Variational methods tries to minimize the first-order PAC-Bayes bound,

4 KL(p,m)

inE,, [L(,D
S [L(6, D)] "
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Conclusions and Future Works

@ The Bayesian approach does not seem to be an optimal learning strategy.

@ Novel variational and ensemble learning algorithms.

https://github.com/PGM-Lab/PAC2BAYES
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