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The learning problem

Notation:

ν(x) is the data generating distribution (unknown).

p(x|θ) is a probabilistic model parametrized by θ.

∀θ ν(x) 6= p(x|θ).

The predictive posterior distribution for a given ρ(θ),

p(x) =

∫
p(x|θ)ρ(θ)dθ = Eρ(θ)[p(x|θ)]

The learning problem is defined as,

ρ? = argmin
ρ
KL(ν(x),Eρ(θ)[p(x|θ)])

= argmin
ρ

Eν(x)[ln
1

Eρ(θ)[p(x|θ)]
]︸ ︷︷ ︸

CE(ρ)

Learning from a finite dataset

We do not have access to ν(x), only to a i.i.d. sample D = {x1, . . . ,xn}.
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First-order PAC-Bayes bounds

Remind!

ρ? = argmin
ρ
CE(ρ) = argmin

ρ
KL(ν(x),Eρ(θ)[p(x|θ)])

CE(ρ)
Jensen

≤ Eρ(θ)[L(θ)]︸ ︷︷ ︸
Jensen bound

PAC−Bayes
. Eρ(θ)[L(θ, D)] +

KL(ρ, π) + ln 1
ξ
+ ψπ,ν(c, n)

cn︸ ︷︷ ︸
PAC−Bayes bound

The learning strategy is to minimize the PAC-Bayes bound

ρ? is the Bayesian posterior for c = 1 (Germain et al. 2016),

ρ? = p(θ|D) =
p(D|θ)π(θ)∫
p(D|θ)π(θ)dθ
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Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

CE(ρ)
Jensen

≤ Eρ(θ)[L(θ)]︸ ︷︷ ︸
Jensen bound

PAC−Bayes
. Eρ(θ)[L(θ, D)] +

KL(ρ, π) + ln 1
ξ
+ ψπ,ν(c, n)

cn︸ ︷︷ ︸
PAC−Bayes bound

The minimum of the Jensen bound is a Dirac-delta distribution centered around,

θ?ML = argmin
θ
KL(ν(x), p(x|θ))
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Is the Bayesian approach an optimal learning strategy?

CE(ρ)
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Is the Bayesian approach an optimal learning strategy?

CE(ρ)
(Liao&Berg,2019)

≤ Eρ(θ)[L(θ)]− V(ρ)︸ ︷︷ ︸
Second−order Jensen bound
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Is the Bayesian approach an optimal learning strategy?

Eρ(θ)[L(θ)]− V(ρ)︸ ︷︷ ︸
Second−order Jensen bound

PAC−Bayes
. Eρ(θ)[L(θ, D)]− V̂(ρ,D) +

KL(ρ, π) + ln 1
ξ
+ ψπ,ν(c, n)

cn︸ ︷︷ ︸
Second−order PAC−Bayes bound
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A new learning framework

Minimizing second-order PAC-Bayes bound

Variational methods for minimizing second-order PAC-Bayes bounds,

argmin
ρ∈Q

Eρ(θ)[L(θ, D)]− V̂(ρ,D) +
KL(ρ, π)

n

where Q is a tractable family of densities (i.e. fully factorized Gaussian distribution).

Variational Inference

Standard Variational methods tries to minimize the first-order PAC-Bayes bound,

argmin
ρ∈Q

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
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Conclusions
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Conclusions and Future Works

The Bayesian approach does not seem to be an optimal learning strategy.

Novel variational and ensemble learning algorithms.

https://github.com/PGM-Lab/PAC2BAYES
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