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Abstract

Model Misspecification

Virtually any model we use in ML does not perfectly represent reality.

We mostly work in the model misspecification regime.

Contributions

Generalization analysis of Bayesian learning under model misspecification.

Bayesian model averaging is suboptimal for generalization.

New learning framework which explicitly addresses model misspecfication.

Empirical evaluations on Bayesian deep learning illustrate this approach.
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Introduction

Assumption 1: I.I.D. Data

There exists an underlying distribution ⌫(x) generating the training/test data.

The training data sample, D = {x1, . . . ,xn}, is i.i.d. from ⌫(x).
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Introduction

Assumption 2: Model misspecification

Our model class only approximates reality (not prefect).

p(x|✓) is our (parametric) probabilistic model class.

8✓ 2 ⇥ ⌫ 6= p(·|✓)
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Introduction

Assumption 3: Likelihood is Upper-Bounded

There exists a M > 0

8x 2 X , 8✓ 2 ⇥ p(·|✓)  M,

It holds in supervised classification (e.g. M = 1) and it may require to constrain
the parameter space (e.g. the variance of the Gaussian higher than ✏ > 0),.

This analysis also applies to a supervised settings!!
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The learning problem

Notation:

⇢(✓) is a probability distribution over the parameters of my model.

⇢(✓) depends on data. It is a quasi-posterior.

The predictive posterior distribution for a given ⇢(✓),

p(x) =

Z
p(x|✓)⇢(✓)d✓ = E⇢(✓)[p(x|✓)]

E⇢(✓)[p(x|✓)] is Bayesian model averaging when ⇢(✓) = p(✓|D),

The learning problem is defined as,

⇢

?
= argmin

⇢
KL( ⌫(x)

|{z}
Data

distribution

, E⇢(✓)[p(x|✓)]| {z }
p(x)

) = argmin

⇢
E⌫(x)[� lnE⇢(✓)[p(x|✓)]]| {z }

CE(⇢)

CE(⇢) measures the generalization error (or the predicitive risk) associated to ⇢.
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The learning strategy
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The learning strategy

How to solve this problem

⇢

?
= argmin

⇢
CE(⇢)

| {z }
Generalization

Error

if we do not have access to ⌫(x)

The learning strategy

The solution is to employ upper-bounds:

CE(⇢) |{z}
Jensen inequality

Oracle-Bound(⇢, ⌫) .
|{z}

w.p. (1�⇠)

Empirical-Bound(⇢, D, ⇠)

... and minimize Empirical-Bound(⇢, D, ⇠),

min

⇢
Empirical-Bound(⇢, D, ⇠)

The quality of the solution is going to depend of the quality of the bounds.
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First-order Jensen bounds and the Bayesian posterior
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First-order Jensen bounds and the Bayesian posterior

CE(⇢)

| {z }
Generalization

Error

Jensen Inequality
z}|{
 E⇢[L(✓)]| {z }

Oracle bound

w.p. (1�⇠)
z}|{
. E⇢[

ˆ

L(✓, D)] +

KL(⇢,⇡)

n

+

cte

n| {z }
PAC-Bayes bound (Alquier et al. 2016)

L(✓) is the expected log-loss, L(✓) = �E⌫(x)[ln p(x|✓)].

ˆ

L(✓, D) is the empirical log-loss, L(✓, D) = � 1
n ln p(D|✓).

⇡(✓) is a prior, which is independent of D.
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Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

The learning strategy is to minimize the PAC-Bayes bound,

⇢

?
= argmin

⇢
E⇢(✓)[L(✓, D)] +

KL(⇢,⇡)

n

+

cte

n| {z }
PAC-Bayes bound (Alquier et al. 2016)

= argmax

⇢
E⇢(✓)[ln p(D|✓)]�KL(⇢,⇡)

| {z }
Evidence Lower Bound (ELBO)

⇢

? is the Bayesian posterior,

⇢

?
= p(✓|D) =

p(D|✓)⇡(✓)R
p(D|✓)⇡(✓)d✓

The Bayesian posterior is a proxy

p(✓|D) ⇡ argmin

⇢
KL( ⌫(x)

|{z}
Data

distribution

, E⇢(✓)[p(x|✓)]| {z }
Predictive
posterior

)
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Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

CE(⇢)

| {z }
Generalization

Error

Jensen Inequality
z}|{
 E⇢[L(✓)]| {z }

First-Order
Jensen bound

w.p. (1�⇠)
z}|{
. E⇢[

ˆ

L(✓, D)] +

KL(⇢,⇡)

n

+

cte

n| {z }
PAC-Bayes bound (Alquier et al. 2016)

1 The Bayesian posterior converges to the minimum of E⇢[L(✓)].

2 The minimum of E⇢[L(✓)] is

A Dirac-delta distribution centered around ✓?
J = argmin✓ KL(⌫(x), p(x|✓))

Is the Bayesian approach optimal for minimizing the generalization error?

Is this Dirac-delta distribution centered around ✓?
J a good proxy of ⇢??

⇢

?
= argmin

⇢
KL( ⌫(x)

|{z}
Data

distribution

, E⇢(✓)[p(x|✓)]| {z }
Predictive
posterior

)
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Bayesian posterior optimal under perfect specification

argmin

⇢
CE(⇢)

| {z }
Generalization

Error

= �✓J (✓)| {z }
Dirac-Delta
distribution
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Bayesian posterior optimal under perfect specification
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Bayesian posterior not optimal under misspecification

argmin

⇢
CE(⇢)

| {z }
Generalization

Error

6= �✓J (✓)| {z }
Dirac-Delta
distribution
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Bayesian posterior not optimal under misspecification

CE(⇢)

| {z }
Generalization

Error

 E⇢[L(✓)] �

Variancez}|{
V(⇢)

| {z }
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Second-order Jensen Bounds

CE(⇢)  E⇢[L(✓)] �

Variancez}|{
V(⇢)

| {z }
Second-order Jensen bound (Liao et al. 2019)

V(⇢) measures the variance of the predictive posterior:

V(⇢) = E⌫(x)[
1

2max✓ p(x|✓)2
E⇢(✓)[(p(x|✓)� p(x))

2
]] � 0

V(⇢) accounts for model diversity :

V(⇢) = 0 if 8✓ 6= ✓0
p(x|✓) = p(x|✓0

)
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Second-order PAC-Bayesian Bounds

CE(⇢)

| {z }
Generalization

Error

 E⇢[L(✓)]� V(⇢)
| {z }

Second-order
Jensen bound

. E⇢[L̂(✓, D)]�

Empirical Variance
z }| {
V̂(⇢, D) +

KL(⇢,⇡)

n
+

cte

n| {z }
Second-order PAC-Bayes bound

E⇢[
ˆ

L(✓, D)] encourages to place ⇢ around individual models with small error.

ˆV(⇢, D) encourages diversity among models.

Key factor when learning under model misspecification.

KL(⇢,⇡)
n encourages ⇢ to be close to ⇡ (i.e. acts as a regularizer).

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 17
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Learning by Minimizing second-order PAC-Bayes bounds
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A new learning framework

PAC2-Bayesian Learning

A variational-like method,

argmin

⇢2Q
E⇢(✓)[L(✓, D)]� ˆV(⇢, D) +

KL(⇢,⇡)

n

+

cte

n| {z }
Second-order PAC-Bayes Bound

where Q is a tractable family of densities (i.e. fully factorized Gaussian distribution).

This is a generalized variational inference method (Knoblauch et al. 2019).

Di↵erent solvers are available in the literature (Wang et al. 2017).

Variational Inference

Standard Variational methods tries to minimize the first-order PAC-Bayes bound,

argmin

⇢2Q
E⇢(✓)[L(✓, D)] +

KL(⇢,⇡)

n

+

cte

n| {z }
First-order PAC-Bayes Bound
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Ensemble Learning

Ensembles through Mixture of Dirac-delta distributions

⇢ defined as a mixture of Dirac-delta distributions parametrized by {✓1, . . . ,✓E},

⇢E(✓) =
EX

j=1

1

E

�✓j
(✓)

where �✓j
is a Dirac-delta distribution centered around ✓j

New ensemble learning framework:

arg min

{✓1,...,✓E}

1

E

EX

j=1

ˆ

L(✓j , D)

| {z }
Individual Model Errors

�

Ensemble Diversity
z }| {
ˆV(⇢E , D) � 1

E

EX

j=1

ln⇡(✓j)

n

| {z }
Regularizer

Diversity has been widely recognized as a key factor in ensemble methods:

V(⇢E , D) is a well-founded diversity measure.

Help to explain why diversity is key for generalization in ensembles.
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Experimental Evaluation with Toy Data Sets
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Bayesian Multilayer Perceptron

Test Log-likelihood=�50.15

Test Log-likelihood=�25.23

⌫(y|x) = N (µ = s(x),�

2
= 10)

p(y|x,✓) = N (µ = MLP20(x;✓),�
2
= 1)

⇢(✓) =

Y

i

N (µi,�i)
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Ensemble of Multilayer Perceptrons

Test Log-likelihood=�15.91

⌫(y|x) = N (µ = s(x),�

2
= 10)

p(y|x,✓) = N (µ = MLP20(x;✓),�
2
= 1)

⇢(✓) =

3X

j=1

1

E

�✓j
(✓)
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Experimental Evaluation on real data sets

Learning under model misspecification Experimental Evaluation on real data sets 22



Data Sets

Fahsion-Mnist CIFAR 10
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Prediction Tasks

Fahsion-Mnist CIFAR 10

Task 1

Supervised Classification: 10 classes.

Learning under model misspecification Experimental Evaluation on real data sets 23



Prediction Tasks

x

y

Self-Supervised Classification

Task 2 as a regression/Normal data model.

Task 3 as a Binomial data model.
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Variational Approach (Infinite Mixture Models)

(the lower the better)

MLP model with 20 hidden units, Relu activation.

100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)

(the lower the better)

Models initialized with the same parameters.

MLP model with 20 hidden units, Relu activation.

100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)

(the lower the better)
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Ongoing work: Ensemble Diversity

Ensembles of four LeNet5 neural network on CIFAR-100
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Ongoing work: Ensemble Diversity

Ensembles of four LeNet5 neural network on CIFAR-100
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Conclusions and Future Works
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Conclusions and Future Works

The Bayesian approach seems to be not optimal strategy for learning.

Second-order PAC-Bayesian bounds directly address mode misspecification.

Novel variational and ensemble learning algorithms.

Future works:
Extensive empirical evaluation (new SOTA results in Bayesian deep learning?).

What happens at the interpolation regime? In this case, V(⇢, D) = 0

Related work on Majority Voting:

Masegosa, A. R., Lorenzen, S. S., Igel, C., & Seldin, Y. Second order PAC-Bayesian
bounds for the weighted majority vote. NeurIPS 2020.

https://github.com/PGM-Lab/PAC2BAYES
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