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Abstract
Model Misspecification

o Virtually any model we use in ML does not perfectly represent reality.

o We mostly work in the model misspecification regime.
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Abstract

Model Misspecification

o Virtually any model we use in ML does not perfectly represent reality.

o We mostly work in the model misspecification regime.

Contributions

o Generalization analysis of Bayesian learning under model misspecification.
@ Bayesian model averaging is suboptimal for generalization.
o New learning framework which explicitly addresses model misspecfication.

o Empirical evaluations on Bayesian deep learning illustrate this approach.

Learning under model misspecification Introduction 2



Introduction

Assumption 1: |.1.D. Data

@ There exists an underlying distribution generating the training/test data.

@ The training data sample, D = {x1,...,Xy}, is i.i.d. from
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Introduction

Assumption 2: Model misspecification

@ Our model class only approximates reality (not prefect).

@ p(x|@) is our (parametric) probabilistic model class.

Learning under model misspecification Introduction 4



Introduction
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@ Our model class only approximates reality (not prefect).
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V0 e® u+#p(l0)
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Introduction

Assumption 3: Likelihood is Upper-Bounded

@ There existsa M >0

VxeX,V0e€® p(-0) <M,
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Assumption 3: Likelihood is Upper-Bounded

@ There existsa M >0
VxeX,V0e€® p(-0) <M,

@ It holds in supervised classification (e.g. M = 1) and it may require to constrain
the parameter space (e.g. the variance of the Gaussian higher than € > 0),.
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Introduction

Assumption 3: Likelihood is Upper-Bounded

@ There existsa M >0
VxeX,V0e€® p(-0) <M,

@ It holds in supervised classification (e.g. M = 1) and it may require to constrain
the parameter space (e.g. the variance of the Gaussian higher than € > 0),.

This analysis also applies to a supervised settings!!
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The learning problem

o Notation:
° is a probability distribution over the parameters of my model.
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The learning problem

o Notation:
° is a probability distribution over the parameters of my model.
° depends on data. It is a quasi-posterior.

@ The predictive posterior distribution for a given ,
p(0) = [ p(x10)p(6)d6 =B, 1) (xI0)]
o E, ) [p(x]0)] is Bayesian model averaging when = p(6|D),

@ The learning problem is defined as,

= argmin K L( s Epo)[p(x10)])
p ~N ——

Data
distribution P()
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The learning problem

o Notation:
° is a probability distribution over the parameters of my model.
° depends on data. It is a quasi-posterior.

@ The predictive posterior distribution for a given ,
p(0) = [ p(x10)p(6)d6 =B, 1) (xI0)]
o E, ) [p(x]0)] is Bayesian model averaging when = p(6|D),

@ The learning problem is defined as,

= argmin K L( , E 0)[p(x|0)]) = argminE, . [~ InE, 4 [p(x]0)]]
P N ———— P
distafnbation p(x) CE(P)
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The learning problem

o Notation:
° is a probability distribution over the parameters of my model.
° depends on data. It is a quasi-posterior.

@ The predictive posterior distribution for a given ,
p(0) = [ p(x10)p(6)d6 =B, 1) (xI0)]
o E, ) [p(x]0)] is Bayesian model averaging when = p(6|D),

@ The learning problem is defined as,

= argmin K L( , E 0)[p(x|0)]) = argminE, . [~ InE, 4 [p(x]0)]]
P N ———— P
distafnbation p(x) CE(P)

o C'E(p) measures the generalization error (or the predicitive risk) associated to
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The learning strategy

@ How to solve this problem
=argmin CE(p)
4 ——

Generalization
Error

if we do not have access to
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The learning strategy

@ How to solve this problem
=argmin CE(p)
4 ——

Generalization
Error

if we do not have access to
The learning strategy
@ The solution is to employ upper-bounds:

CE(p) < Oracle-Bound(p,”) < Empirical-Bound(p, D, £)

~—
Jensen inequality w.p. (1-&)
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The learning strategy

@ How to solve this problem
=argmin CE(p)
4 ——

Generalization
Error

if we do not have access to
The learning strategy
@ The solution is to employ upper-bounds:

CE(p) < Oracle-Bound(p,”) < Empirical-Bound(p, D, £)

~—
Jensen inequality w.p. (1-&)

@ ... and minimize Empirical-Bound(p, D, §),

min Empirical-Bound(p, D, £)
P
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The learning strategy

@ How to solve this problem
=argmin CE(p)
4 ——

Generalization
Error

if we do not have access to

The learning strategy

@ The solution is to employ upper-bounds:

CE(p) < Oracle-Bound(p,”) < Empirical-Bound(p, D, £)

~—
Jensen inequality w.p. (1-&)

@ ... and minimize Empirical-Bound(p, D, §),

min Empirical-Bound(p, D, £)
P

@ The quality of the solution is going to depend of the quality of the bounds.
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First-order Jensen bounds and the Bayesian posterior

Jensen Inequality

A~
CE(p) < EJ[L(9)]
N—— ——

Generalization Oracle bound
rror

L(0) is the expected log-loss, L(0) = —E, . [In p(x|0)].
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First-order Jensen bounds and the Bayesian posterior

Jensen Inequality w.p. (1-¢)
=~ ~= - KL(p,mw cte
op() S EILO) 5 Bl D)+ LT de
N—— N—— n n
Generalization Oracle bound PAC-Bayes bound (Alquier et al. 2016)

rror

L(0) is the expected log-loss, L(0) = —E, . [In p(x|0)].

L(8, D) is the empirical log-loss, L(6, D) = —LInp(DI6).

m(0) is a prior, which is independent of D.
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Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

@ The learning strategy is to minimize the PAC-Bayes bound,

— argminE,, [L(6, D) + DL | cte

P n n

PAC-Bayes bound (Alquier et al. 2016)
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The Bayesian posterior (Germain et al. 2016)

@ The learning strategy is to minimize the PAC-Bayes bound,

— argminE,, [L(6, D) + DL | cte

P n n

PAC-Bayes bound (Alquier et al. 2016)

argm;xx]E [lnp(D|0)] — KL(p, )

Evidence Lower Bound (ELBO)
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Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

@ The learning strategy is to minimize the PAC-Bayes bound,

— argminE,, [L(6, D) + DL | cte

P n n

PAC-Bayes bound (Alquier et al. 2016)

argm;xx]E [lnp(D|0)] — KL(p, )

Evidence Lower Bound (ELBO)

° is the Bayesian posterior,

p(D|0)x(0)

=p(0|D) = [p(D|6)x(0)d6
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Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

@ The learning strategy is to minimize the PAC-Bayes bound,

— argminE,, [L(6, D) + DL | cte

P n n

PAC-Bayes bound (Alquier et al. 2016)

argm;xx]E [lnp(D|0)] — KL(p, )

Evidence Lower Bound (ELBO)

° is the Bayesian posterior,

=p(0|D) =

The Bayesian posterior is a proxy

p(0|D) %argmpinKL( vx) » Eue0)[p(x]0)])

. Data_ Predictive
distribution posterior
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Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

Jensen Inequality w.p. (1-¢)
-~ b - KL(p,m cte
CE() 2 ELO)] £ E[Le D)+ KLem  de
N~—— N—_—— n n
Generalization First-Order .
Error Jensen bound PAC-Bayes bound (Alquier et al. 2016)
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© The Bayesian posterior converges to the minimum of E,[L(0)].
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Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

Jensen Inequality w.p. (1-¢€)
~~ ~~ . KL(p, 7 cte
cp() S EILe)] S Eke D)+ e de
N~—— N—_—— n n
Generalization First-Order .
Error Jensen bound PAC-Bayes bound (Alquier et al. 2016)

© The Bayesian posterior converges to the minimum of E,[L(0)].
@ The minimum of E,[L(0)] is

A Dirac-delta distribution centered around 0% = arg ming K L(v(x), p(x|0))
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Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

Jensen Inequality w.p. (1-¢)

- KL(p,m cte
cB() S ELO)] T ElLe D)+ M de
N~—— N—_—— n n

Generalization First-Order .
Error Jensen bound PAC-Bayes bound (Alquier et al. 2016)

© The Bayesian posterior converges to the minimum of E,[L(0)].
@ The minimum of E,[L(0)] is
A Dirac-delta distribution centered around 6% = arg ming K L(v(x), p(x|0))
o Is this Dirac-delta distribution centered around 6% a good proxy of p*?
p" = argmin KL( v E. 0 [p(x|0)])

. Data_ Predictive
distribution posterior
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Bayesian posterior optimal under perfect specification

Perfect Model Specification
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Bayesian posterior optimal under perfect specification

Perfect Model Specification
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Bayesian posterior not optimal under misspecification

Model Misspecification
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Bayesian posterior not optimal under misspecification
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Bayesian posterior not optimal under misspeci

Model Misspecification

0.73 1 —— Cross Entropy: CE(p)
First-order Jensen Bound: E,[L(6)]
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Second-order Jensen Bounds

CE() < EIL®)] V()

Second-order Jensen bound (Liao et al. 2019)
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Second-order Jensen Bounds

CE() < EIL®)] V()

Second-order Jensen bound (Liao et al. 2019)

@ V(p) measures the variance of the predictive posterior:

V(p) =E [WE [(p(x]6) = p(x))*]] > 0

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 16



Second-order Jensen Bounds

CE() < EIL®)] V()

Second-order Jensen bound (Liao et al. 2019)

@ V(p) measures the variance of the predictive posterior:

V(p) =E [WE [(p(x]6) = p(x))*]] > 0

@ V(p) accounts for model diversity:

V(5) = 0if V0 £ 0’ p(x16) = p(x|6')
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Second-order PAC-Bayesian Bounds

Empirical Variance

——
2 - KL(p,m cte
CE() <ELO)]-V() < ELO.D) - V(D) +2H0m e
—— —_— n n
Geneéilri;?tion JSeer::soemdL%'Ssg Second-order PAC-Bayes bound
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o E,[L(8, D)] encourages to place /) around individual models with small error.
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Second-order PAC-Bayesian Bounds

Empirical Variance

——
2 - KL(p,m cte
CE() <ELO)]-V() < ELO.D) - V(D) +2H0m e
—— —_— n n
Geneéilri;?tion JSeer::soemdL%'Ssg Second-order PAC-Bayes bound

o E,[L(8, D)] encourages to place /) around individual models with small error.

e V(p, D) encourages diversity among models.

o Key factor when learning under model misspecification.

° KL(p,m)
n

encourages p to be close to 7 (i.e. acts as a regularizer).
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Learning by Minimizing second-order PAC-Bayes bounds
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A new learning framework
PAC?-Bayesian Learning

@ A variational-like method,

KL(p,m) _ cte

inE, ., [L(6,D)] —V(p, D
arg min B, o)[L(6, D)| — V(p, D) + — -

Second-order PAC-Bayes Bound
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where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).
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where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).

o This is a generalized variational inference method (Knoblauch et al. 2019).
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arg min B, o)[L(6, D)| — V(p, D) + — -

Second-order PAC-Bayes Bound

where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).
o This is a generalized variational inference method (Knoblauch et al. 2019).

o Different solvers are available in the literature (Wang et al. 2017).
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A new learning framework
PAC?-Bayesian Learning

@ A variational-like method,

KL(pm) | cte

argnélélE [L(07D)]_V( 7D)+ n n

Second-order PAC-Bayes Bound

where @ is a tractable family of densities (i.e. fully factorized Gaussian distribution).
o This is a generalized variational inference method (Knoblauch et al. 2019).

o Different solvers are available in the literature (Wang et al. 2017).

Variational Inference
o Standard Variational methods tries to minimize the first-order PAC-Bayes bound,

argminE, ) [L(6, D)] + KL(p,) 4k cte
€Q n n

First-order PAC-Bayes Bound
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Ensemble Learning
Ensembles through Mixture of Dirac-delta distributions

o p defined as a mixture of Dirac-delta distributions parametrized by {01,...,0g},

=5 59, (0)

where g is a Dirac-delta distribution centered around 0,
J

&
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Ensemble Learning
Ensembles through Mixture of Dirac-delta distributions

o p defined as a mixture of Dirac-delta distributions parametrized by {01,...,0g},

-L 3o

where g is a Dirac-delta distribution centered around 0,
J

tq \

o New ensemble learning framework:

Ensemble Diversity

——

1 & Inm(6;)
ar min L(6;,D)— V(pg,D) — = —
g{Ol, 0., F Z J (pE, D) EZ n

Individual Model Errors Regularizer
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ar min L(6;,D)— V(pg,D) — = —
g{Ol, 0., F Z J (pE, D) EZ n

Individual Model Errors Regularizer

o Diversity has been widely recognized as a key factor in ensemble methods:
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o Diversity has been widely recognized as a key factor in ensemble methods:

o V(pg, D) is a well-founded diversity measure.
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Ensemble Learning
Ensembles through Mixture of Dirac-delta distributions

o p defined as a mixture of Dirac-delta distributions parametrized by {01,...,0g},

-L 3o

where g is a Dirac-delta distribution centered around 0,
J

tq \

o New ensemble learning framework:

Ensemble Diversity

——

1 & Inm(6;)
ar min L(6;,D)— V(pg,D) — = —
g{Ol, 0., F Z J (pE, D) EZ n

Individual Model Errors Regularizer
o Diversity has been widely recognized as a key factor in ensemble methods:
o V(pg, D) is a well-founded diversity measure.

o Help to explain why diversity is key for generalization in ensembles.
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Ensemble of Multilayer Percep s

PAC2-Ensemble Posterior Predictive
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Experimental Evaluation on real data sets

Learning under model misspecification Experimental Evaluation on real data sets

22



Data Sets

H

f =

=g B
D=  =iEee>

=]

¥

. h:-ML

(L' -
=i b § b D

anﬁmﬂmumnj
T L
dELREESnEn

Fahsion-Mnist CIFAR 10

& %39;.1&‘--; b b

V.
%
':
4

=

ko= R BRmmEe § 7 ]
LA | mBE ==

O -

Experimental Evaluation on real data sets 22

Learning under model misspecification



Prediction Tasks

6: frog 9: truck 9: truck 4: deer 1: automobile

e l =y

1: automobile 2: bird 7: horse 8: ship 3:cat

=M WM.
= { | & ~

I ‘ nk— "‘ﬂ = 4: deer 7:horse 7: horse 2: bird 9: truck

9: truck 9: truck 3: cat 2: bird 6: frog

n Ba @A

Fahsion-Mnist CIFAR 10

@ Supervised Classification: 10 classes.
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Prediction Tasks

Self-Supervised Classification

o Task 2 as a regression/Normal data model.

@ Task 3 as a Binomial data model.
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Variational Approach (Infinite Mixture Models)

Fashion-MNIST
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(the lower the better)

@ MLP model with 20 hidden units, Relu activation.
@ 100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Variational Approach (Infinite Mixture Models)
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(the lower the better)

@ MLP model with 20 hidden units, Relu activation.
@ 100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)

Fashion-MNIST - PAC2-Ensemble
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(the lower the better)

@ Models initialized with the same parameters.
@ MLP model with 20 hidden units, Relu activation.
@ 100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)

CIFAR10 - PAC2-Ensemble
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(the lower the better)

@ Models initialized with the same parameters.
@ MLP model with 20 hidden units, Relu activation.
@ 100 data batches, 100 epochs, AdamOptimizer default learning rate.
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going work: Ensemble Diversity
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@ Ensembles of four LeNet5 neural network on CIFAR-100
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going work: Ensemble Diversity
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@ Ensembles of four LeNet5 neural network on CIFAR-100

Learning under model misspecificati Experimental Evaluation on real data sets 28



Learning under model misspecification

Conclusions and Future Works
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Conclusions and Future Works

@ The Bayesian approach seems to be not optimal strategy for learning.
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Second-order PAC-Bayesian bounds directly address mode misspecification.

@ Novel variational and ensemble learning algorithms.

Future works:
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o Extensive empirical evaluation (new SOTA results in Bayesian deep learning?).

o What happens at the interpolation regime? In this case, V(p, D) =0

o Related work on Majority Voting:

Masegosa, A. R., Lorenzen, S. S., Igel, C., & Seldin, Y. Second order PAC-Bayesian
bounds for the weighted majority vote. NeurlPS 2020.
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Second-order PAC-Bayesian bounds directly address mode misspecification.

@ Novel variational and ensemble learning algorithms.

Future works:

©

o Extensive empirical evaluation (new SOTA results in Bayesian deep learning?).
o What happens at the interpolation regime? In this case, V(p, D) =0
o Related work on Majority Voting:

Masegosa, A. R., Lorenzen, S. S., Igel, C., & Seldin, Y. Second order PAC-Bayesian
bounds for the weighted majority vote. NeurlPS 2020.
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