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Bayesian Model Averaging vs Model Combination

Model Combination

Model Combination works by enriching the model space.

BMA represents the inability to distinguish the best single model when using
limited data.
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Deep Ensembles (Lakshminarayanan et al., 2017, Wenzel et al., 2020)

Deep Ensembles provides SOTA performance in terms of:

Uncertainty Estimation.
Robustness Against Distributional Shifts.

Open Question: Why do deep ensembles work so well?

Ep(θ|D)[p(y | x,θ)]︸ ︷︷ ︸
Bayesian Predictive posterior

≈ 1

K

∑
i

Model Prediction︷ ︸︸ ︷
p(y | x,θi)︸ ︷︷ ︸

Finite Sample Approximation

Benefits of deep ensembles are due to their Bayesian nature.

Deep Ensembles do not perform model combination (Minka, 2002).

Bayesian Model Averaging is not Model Combination: A PAC-Bayesian Analysis of Deep Ensembles 3



Deep Ensembles (Lakshminarayanan et al., 2017, Wenzel et al., 2020)

Deep Ensembles provides SOTA performance in terms of:

Uncertainty Estimation.
Robustness Against Distributional Shifts.

Open Question: Why do deep ensembles work so well?

Ep(θ|D)[p(y | x,θ)]︸ ︷︷ ︸
Bayesian Predictive posterior

≈ 1

K

∑
i

Model Prediction︷ ︸︸ ︷
p(y | x,θi)︸ ︷︷ ︸

Finite Sample Approximation

Benefits of deep ensembles are due to their Bayesian nature.

Deep Ensembles do not perform model combination (Minka, 2002).

Bayesian Model Averaging is not Model Combination: A PAC-Bayesian Analysis of Deep Ensembles 3



Deep Ensembles (Lakshminarayanan et al., 2017, Wenzel et al., 2020)

Deep Ensembles provides SOTA performance in terms of:

Uncertainty Estimation.
Robustness Against Distributional Shifts.

Open Question: Why do deep ensembles work so well?

Ep(θ|D)[p(y | x,θ)]︸ ︷︷ ︸
Bayesian Predictive posterior

≈ 1

K

∑
i

Model Prediction︷ ︸︸ ︷
p(y | x,θi)︸ ︷︷ ︸

Finite Sample Approximation

Benefits of deep ensembles are due to their Bayesian nature.

Deep Ensembles do not perform model combination (Minka, 2002).

Bayesian Model Averaging is not Model Combination: A PAC-Bayesian Analysis of Deep Ensembles 3



Bayesian Model Averaging

Let us assume we have:

Model class: {p(y|x,θ) : θ ∈ Θ}. (e.g. neural network fixed architecture).
Training Data Sample D.

Bayesian posterior:

p(θ|D)︸ ︷︷ ︸
Bayesian posterior

=

Likelihood︷ ︸︸ ︷
p(D|θ)

Prior︷︸︸︷
π(θ)∫

p(D|θ)π(θ)dθ︸ ︷︷ ︸
Normalization Constant

Bayesian model averaging (BMA):

Ep(θ|D)[p(y | x,θ)]︸ ︷︷ ︸
Bayesian Predictive posterior

=

∫ Model Prediction︷ ︸︸ ︷
p(y | x,θ)dθ p(θ|D)︸ ︷︷ ︸

Bayesian posterior

dθ
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Model Combination

ρ(θ) denotes a quasi-posterior:

Defines a probability distribution over Θ.

May depends on the training data sample D.

Model Combination defined by ρ(θ):

Eρ[p(y | x,θ)]︸ ︷︷ ︸
Predictive posterior

=

∫ Model Prediction︷ ︸︸ ︷
p(y | x,θ) ρ(θ)︸︷︷︸

Quasi-posterior

dθ

Considerations:

BMA is special case of model combination (i.e. when ρ(θ) = p(θ | D)).

We can choose any distribution ρ over Θ using information from D.
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Generalization Performance of Model Combination (Masegosa 2020)

We assume there is an unknown data generating distribution ν(y,x).

The training/test data are generated from ν (i.e D ∼ ν(y,x)).

Generalization Error of a ρ-combined model using cross-entropy loss.

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

= Eν [− lnEρ[p(y | x,θ)]︸ ︷︷ ︸
Predictive posterior

of ρ(θ)

]

Model combination works with an enriched model class parametrized by ρ:

{p(y|x,θ) : θ ∈ Θ}︸ ︷︷ ︸
Model class parametrized by θ

⊆ {Eρ[p(y | x,θ)] : ρ is a quasi-posterior over Θ}︸ ︷︷ ︸
Model class parametrized by ρ

In consequence

min
ρ

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

≤ min
θ

Lce(θ)︸ ︷︷ ︸
Gen. Error of
the model θ
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Generalization Performance Analysis of BMA

PAC-Bayesian upper-bounds (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

Jensen
Inequality︷︸︸︷

≤ Eρ[Lce(θ)]︸ ︷︷ ︸
Gibbs Error: ρ-average
individual models’ error

with high
probability︷︸︸︷

≲

PAC-Bayes bound︷ ︸︸ ︷
Eρ[L̂ce(θ, D)]︸ ︷︷ ︸
Empirical Gibbs Error

+
KL(ρ, π)

n
+

cte

n

p(θ|D) = argmin
ρ

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+

cte

n︸ ︷︷ ︸
PAC-Bayes bound (Germain et al. 2016)

The Bayesian posterior is a proxy

p(θ|D) ≈ argmin
ρ

Lce(ρ)
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Is the Bayesian approach an optimal distribution for model combination?

PAC-Bayesian upper-bounds (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

Jensen
Inequality︷︸︸︷

≤ Eρ[Lce(θ)]︸ ︷︷ ︸
Gibbs Error: ρ-average
individual models’ error

with high
probability︷︸︸︷

≲

PAC-Bayes bound︷ ︸︸ ︷
Eρ[L̂ce(θ, D)]︸ ︷︷ ︸
Empirical Gibbs Error

+
KL(ρ, π)

n
+

cte

n

1 The Bayesian posterior converges (large sample limit) to argminEρ[Lce(θ)].

2 The minimum of Eρ[L(θ)] is a Dirac-delta distribution centered around the best
possible single model θ⋆.

δ(θ − θ⋆)︸ ︷︷ ︸
Dirac-Delta distribution

= argmin
ρ

Eρ[Lce(θ)]

Is this solution optimal for model combination? (Masegosa 2020)

δ(θ − θ⋆) = argmin
ρ

Lce(ρ)

Under perfect model specification (i.e. ν(y|x) belongs to the model class).
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BMA optimal under perfect specification (Masegosa 2020)

δ(θ − θ⋆)︸ ︷︷ ︸
Dirac-Delta
distribution

= argmin
ρ

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model
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BMA optimal under model misspecification (Masegosa 2020)

δ(θ − θ⋆)︸ ︷︷ ︸
Dirac-Delta
distribution

= argmin
ρ

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model
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BMA not optimal under model misspecification (Masegosa 2020)
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Eρ[L̂ce(θ, D)]︸ ︷︷ ︸
Empirical Gibbs Error

+
KL(ρ, π)

n
+

cte

n
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Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model
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Jensen

Inequality︷︸︸︷
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Second-Order PAC-Bayesian Bounds (Masegosa 2020)

Eρ[Lce(θ)]︸ ︷︷ ︸
Gibbs Error

− Dce(ρ)︸ ︷︷ ︸
Diversity of ρ

with high
probability︷︸︸︷

≲

Second-Order PAC-Bayes bound︷ ︸︸ ︷
Eρ[L̂ce(θ, D)]︸ ︷︷ ︸
Empirical Gibbs Error

− D̂ce(ρ,D)︸ ︷︷ ︸
Empirical Diversity

+
KL(ρ, π)

n
+

cte

n
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

Bayesian Model Averaging Model Combination

L(θ⋆)︸ ︷︷ ︸
Gen. Error of

θ⋆model

< Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

L(θ⋆)︸ ︷︷ ︸
Gen. Error of

θ⋆model

> Lce(ρ
⋆)︸ ︷︷ ︸

Gen. Error of
ρ⋆-combined model

Which is the regime of Neural Networks Ensembles?
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the BMA regime

Bayesian Model Averaging Regime Multi-Mode Posterior

L(θ⋆)︸ ︷︷ ︸
Gen. Error of

θ⋆model

< Lce(p(θ|D))︸ ︷︷ ︸
Gen. Error of

Bayesian Model Averaging

Ep(θ|D)[p(y | x,θ)]︸ ︷︷ ︸
Bayesian Predictive posterior

≈ 1

K

∑
i

Model Prediction︷ ︸︸ ︷
p(y | x,θi)︸ ︷︷ ︸

Finite Sample Approximation
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Model Combination Regime Each Local Optima is a Different Model

L(θ⋆)︸ ︷︷ ︸
Gen. Error of

θ⋆model

> Lce(ρ
⋆)︸ ︷︷ ︸

Gen. Error of
ρ⋆-Combined Model

Eρ⋆(θ)[p(y | x,θ)]︸ ︷︷ ︸
ρ⋆-Combined Model

≈ 1

K

∑
i

Model Prediction︷ ︸︸ ︷
p(y | x,θi)︸ ︷︷ ︸

Uniform Model Combination
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Each Local Optima is a Different Model

Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model

Second-order
Jensen

Inequality︷︸︸︷
≤ Eρ[Lce(θ)]︸ ︷︷ ︸

Gibbs Error

− Dce(ρ)︸ ︷︷ ︸
Diversity of ρ
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Empirical Evidence (Ortega et al. 2021)

CIFAR 10 CIFAR 100

Experimental Settings

Ensembles of four ResNet20/leNet5 Neural Networks.

Each model was independently run until convergence (random initialization).

Five repetitions.
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Empirical Evidence (Ortega et al. 2021)
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Model Combination Regime above the black-line.

Bayesian Model Averaging Regime below the black-line.
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Each Local Optima is a Different Model

Corollary 5 of (Ortega et al. 2021)

If the diversity of the ensemble is large enough:

Eρ[Lce(θ)]︸ ︷︷ ︸
Gibbs Error

− Lce(θ
⋆)︸ ︷︷ ︸

Gen. Error of
model θ⋆

≤ Dce(ρ)︸ ︷︷ ︸
Diversity of ρ

then, the generalization of the ensemble is better:

Lce(θ
⋆)︸ ︷︷ ︸

Gen. Error of
model θ⋆

> Lce(ρ)︸ ︷︷ ︸
Gen. Error of

ρ-combined model
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Empirical Evidence (Ortega et al. 2021)
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Conclusions

This analysis corroborates the notions of Thomas Minka:

BMA only tries to identify the best single model.
Model Combination exploit an enrich model space.

We have two regimes:

BMA regime is optimal when your model class is not wrong.
MC regime is optimal when your model class is wrong.

Evidence supporting that Deep Ensembles works on the model combination regime.

Ensembles are great when Your model is Wrong!!
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