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Bayesian Model Averaging vs Model Combination

Bayesian model averaging is not model combination

Thomas P. Minka
December 13, 2002

In a recent paper, Domingos (2000) compares Bayesian model averaging (BMA) to other model
combination methods on some benchmark data sets, is surprised that BMA performs worst, and
suggests that BMA may be flawed. These results are actually not surprising, especially in light
of an earlier paper by Domingos (1997) where it was shown that model combination works by
enriching the space of hypotheses, not by approximating a Bayesian model average. And the
only flaw with BMA is the belief that it is an algorithm for model combination, when it is not.

Model Combination

o Model Combination works by enriching the model space.

@ BMA represents the inability to distinguish the best single model when using
limited data.




Deep Ensembles (Lakshminarayanan et al., 2017, Wenzel et al., 2020)

o Deep Ensembles provides SOTA performance in terms of:

o Uncertainty Estimation.
o Robustness Against Distributional Shifts.
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@ Benefits of deep ensembles are due to their Bayesian nature.

@ Deep Ensembles do not perform model combination (Minka, 2002).
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Bayesian Model Averaging

@ Let us assume we have:

o Model class: {p(y|x,0) : 0 € O}. (e.g. neural network fixed architecture).
o Training Data Sample D.

o Bayesian posterior:

Likelihood Prior

—
pO|p) =P8 m(6)

—~— p(D|0)7(6)do

Bayesian posterior

| S S —

Normalization Constant
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Bayesian Model Averaging

@ Let us assume we have:

o Model class: {p(y|x,0) : 0 € O}. (e.g. neural network fixed architecture).
o Training Data Sample D.

o Bayesian posterior:
Likelihood Prior
(D]6) =(6)
T
po|D) =22 T

——
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Normalization Constant

o Bayesian model averaging (BMA):

Model Prediction

—_—~—
Epo10[p(y | x,8)] = / 2y [x0)d6 p6|D) db
—_——— ——

Bayesian Predictive posterior Bayesian posterior
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Model Combination

° denotes a quasi-posterior:
o Defines a probability distribution over ®.

o May depends on the training data sample D.
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Model Combination

° denotes a quasi-posterior:
o Defines a probability distribution over ®.

o May depends on the training data sample D.

@ Model Combination defined by

Model Prediction

——
E, [p(y | x,0)] = / 2w x0) a0
— S~~~

Predictive posterior Quasi-posterior

o Considerations:
o BMA is special case of model combination (i.e. when =p(0 | D)).

o We can choose any distribution p over ® using information from D.
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Generalization Performance of Model Combination (Masegosa 2020)

@ We assume there is an unknown data generating distribution v(y, x).

o The training/test data are generated from v (i.e D ~ v(y, x)).
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@ In consequence

min = Lee(p) < min L (0)

P ~—— 0
Gen. Error of Gen. Error of
p-combined model the model 6
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Generalization Performance Analysis of BMA

PAC-Bayesian upper-bounds (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

Jensen
Inequality
=
Lee(p) < E)[Le(9)]
——
Gen. Error of Gibbs Error: p-average
p-combined model individual models’ error
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Generalization Performance Analysis of BMA
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. KL(p,m cte
p(0|D) = argminE,,)[L(0,D)]+ KL(p,m) + =
P n n

PAC-Bayes bound (Germain et al. 2016)
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Generalization Performance Analysis of BMA

PAC-Bayesian upper-bounds (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

Jensen with high PAC-Bayes bound
Inequality probability
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p-combined model individual models’ error
. KL(p,m cte
p(0|D) = argminE,,)[L(0,D)]+ 7(”{’ ) + o
P

PAC-Bayes bound (Germain et al. 2016)

The Bayesian posterior is a proxy

p(0|D) =~ argmin Le(p)
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Is the Bayesian approach an optimal distribution for model combination?

PAC-Bayesian upper-bounds (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

Jensen with high PAC-Bayes bound
Inequality probability
~= = - KL(p,m) cte
Lee(p) < Ef[Lee(9)] S Eflee(8,D)] +———F+ —
N—— N —— N————— n n
Gen. Error of Gibbs Error: p-average Empirical Gibbs Error
p-combined model individual models’ error

@ The Bayesian posterior converges (large sample limit) to argminE,[L..(0)].
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@ The Bayesian posterior converges (large sample limit) to argminE,[L..(0)].

@ The minimum of E,[L(0)] is a Dirac-delta distribution centered around the best
possible single model 6*.

50 —6") =argminE,[Lc(0)]
N —— P

Dirac-Delta distribution
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Is this solution optimal for model combination? (Masegosa 2020)

5(60 — 0*) = argmin Lce(p)
P
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Is this solution optimal for model combination? (Masegosa 2020)
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Under perfect model specification (i.e. v(y|x) belongs to the model class).
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BMA optimal under perfect specification (Masegosa 2020)

//-\_/ 1% \
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BMA optimal under perfect specification (Masegosa 2020)
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BMA optimal under perfect specification (Masegosa 20
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BMA optimal under model misspecification (Masegosa 2020)

N
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BMA optimal under model misspecification (Masegosa
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BMA not optimal under model misspecification (Masegosa 2020)
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BMA not optimal under model misspecification (Masegosa 2020)
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Second-Order PAC-Bayesian Bounds (Masegosa 2020, Ortega et al. 2021)

Second-order

ensen
Inequality
~~
Lee(p) < E/[Lee(0)]  — Dee(p)
N~ — N—~——
Gen. Error of Gibbs Error Diversity of p

p-combined model
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Second-Order PAC-Bayesian Bounds (Masegosa 2020)

with high Second-Order PAC-Bayes bound

probability
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

Bayesian Model Averaging Model Combination
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Bayesian Model Averaging Model Combination
\
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Which is the regime of Neural Networks Ensembles?
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the BMA regime

Bayesian Model Averaging Regime Multi-Mode Posterior
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Model Combination Regime Each Local Optima is a Different Model
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Model Prediction

* E x, 0 X, 9
LOT) > Lu() Py |0~ 7 5501 %0)
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Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Each Local Optima is a Different Model

Space of solutions

Second-order
Jensen
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p-combined model
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Empirical Evidence (Ortega et al. 2021)
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Experimental Settings

@ Ensembles of four ResNet20/leNet5 Neural Networks.
@ Each model was independently run until convergence (random initialization).

o Five repetitions.

Bayesian Model Av ot Model Combination: A PAC-Bayesian Analysis 21



cifarl0
ce-loss

+  leNets +
+

cifar100
ce-loss

076 078 080 0.82 0.84 086 088 0.90
Lee(p)

cifarl0
ce-loss

Lee(67)

+ + ResNet20

&
+

+ % + leNets

254 256 258 260

Leelp)

cifar100
ce-loss

§
+

020 022 024 026 028 030

Lee(p)

@ Model Combination Regime above the black-line.
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@ Bayesian Model Averaging Regime below the black-line.




Two Regimes (Masegosa 2020, Ortega et al. 2021)

If Deep Ensembles work in the Model Combination regime

Each Local Optima is a Different Model

Space of solutions

Corollary 5 of (Ortega et al. 2021)

If the diversity of the ensemble is large enough:

]E [Lce(a)]_ Lce(e*) S Dce( )
N——— N— — N——

Gibbs Error Gen. Error of Diversity of p
model 6*
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If Deep Ensembles work in the Model Combination regime

Each Local Optima is a Different Model

Space of solutions

Corollary 5 of (Ortega et al. 2021)

If the diversity of the ensemble is large enough:

]E [Lce(g)]_ Lce(e*) S Dce( )
——— N— — N——

Gibbs Error Gen. Error of Diversity of p
model 6*

then, the generalization of the ensemble is better:

Lce(o*) > Lce( )

N—— N——
Gen. Error of Gen. Error of
model 6* p-combined model
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Empirical Evidence (Ortega et al. 2021)
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@ Model Combination Regime above the black-line.

@ Bayesian Model Averaging Regime below the black-line.
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Conclusions

@ This analysis corroborates the notions of Thomas Minka:

o BMA only tries to identify the best single model.
o Model Combination exploit an enrich model space.

Bayesian Model Averaging is not Model Combination: A PAC-Bayesian Analysis 25



Conclusions

@ This analysis corroborates the notions of Thomas Minka:

o BMA only tries to identify the best single model.
o Model Combination exploit an enrich model space.

@ We have two regimes:

o BMA regime is optimal when your model class is not wrong.
o MC regime is optimal when your model class is wrong.

Bayesian Model Averaging is not Model Combination: A PAC-Bayesian Analysis 25



Conclusions

@ This analysis corroborates the notions of Thomas Minka:

o BMA only tries to identify the best single model.
o Model Combination exploit an enrich model space.

@ We have two regimes:
o BMA regime is optimal when your model class is not wrong.

o MC regime is optimal when your model class is wrong.

o Evidence supporting that Deep Ensembles works on the model combination regime.

Bayesian Model Avera; s not Model Combination: A PAC-Bayesian Analysis 25



Conclusions

@ This analysis corroborates the notions of Thomas Minka:
o BMA only tries to identify the best single model.

o Model Combination exploit an enrich model space.
@ We have two regimes:
o BMA regime is optimal when your model class is not wrong.

o MC regime is optimal when your model class is wrong.

o Evidence supporting that Deep Ensembles works on the model combination regime.

Ensembles are great when Your model is Wrong!!
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