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The Bayesian approach to Machine Learning

Bayesian machine learning

o Bayesian methods are widely used in machine learning.
@ They provide well founded approach for dealing with model uncertainty.
o Random variables + Probability Calculus.

@ They automatically account for model complexity.

They allow to combine data with prior knowledge.
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The Bayesian approach to Machine Learning
Probabilistic Model

o Conditional generative models: p(y|x, 0).

o Generative models: p(x|0).
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The Bayesian approach to Machine Learning
Probabilistic Model

o Conditional generative models: p(y|x, 0).

o Generative models: p(x|0).

Bayesian Posterior

Likelihood
—N— Prior
D0 ~ =
p(6|D) = __»De) 0)
Bayesian posterior /p(D|9)7r(0)d0
—

Normalization Constant

o We have to resort to approximations to compute the integral.
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o Generative models: p(x|0).

Bayesian Posterior

Likelihood
—N— Prior
D0 ~ =
p(6|D) = __»De) 0)
Bayesian posterior /p(D|9)7r(0)d0
—

Normalization Constant

o We have to resort to approximations to compute the integral.

Bayesian model averaging

Model’s prediction

——
P(Yrest | Xtest, D) = /p(ytest | Teest, )  p(0|D) dO
—_— ~——

Predictive posterior Bayesian posterior
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Bayesian Priors in Bayesian Machine Learning
(work in progress)

Bayesian Priors and Generalization in Probabilistic Machine Learning Bayesian Priors in Bayesian Machine Learning, (work in progress)



Bayesian Priors
Bayesian Priors in Bayesian Statistics

o (Weakly) Informative Priors
o Priors providing information about the data generating process.

o (Non-informative) Reference Priors

e Priors minimizing the impact they have in the Bayesian posterior.
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Bayesian Priors
Bayesian Priors in Bayesian Statistics

o (Weakly) Informative Priors
o Priors providing information about the data generating process.

o (Non-informative) Reference Priors

e Priors minimizing the impact they have in the Bayesian posterior.

Bayesian Priors in Machine Learning

o Regularizing Priors (e.g., zero centered Gaussian distributions)

o Promote small norm parameter that reduce overfitting.
o Overwhelming empirical evidence.
o Connections with L2, L1, etc. through MAP learning.

o What are Regularizing Priors?
o Reference priors, (Weakly) Informative priors or something different.

@ How a Bayesian prior should look like to guarantee generalization performance?
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gularizing Priors

Main Conclusion (Take Away Message)

o Regularizing Priors introduce a biased against high-variance models.
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Regularizing Priors

Main Conclusion (Take Away Message)

o Regularizing Priors introduce a biased against high-variance models.

o For a fixed 6,
o We treat D as a random variable, D ~ (and Drest ~ ).

o Training Loss: L(D,0) = — L Inp(D|0).
o Expected Loss: L(6) =Ep[—1 Inp(D[0)] = E,[—Inp(y | x,0)].

o Variance of the training Loss: V(0) =V, (L Inp(D|9)).
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o Variance of the training Loss: V(0) =V, (L Inp(D|9)).

e If V(0) is large, then 0 is an unreliable model.
o Training loss can be small and Expected loss can be large.
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Regularizing Priors

Main Conclusion (Take Away Message)

o Regularizing Priors introduce a biased against high-variance models.

o For a fixed 6,
o We treat D as a random variable, D ~ (and Drest ~ ).

o Training Loss: L(D,0) = — L Inp(D|0).
o Expected Loss: L(6) =Ep[—1 Inp(D[0)] = E,[—Inp(y | x,0)].

o Variance of the training Loss: V(0) =V, (L Inp(D|9)).

e If V(0) is large, then 0 is an unreliable model.
o Training loss can be small and Expected loss can be large.

o Generalization requires penalizing high-variance models.

o This should be encoded in the prior:
77(0) oce '

o Connected to Gaussian zero-centered priors and other regularizing priors.
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Generalization Analysis of Bayesian learning

PAC-Bayes Bounds

@ Frequentist analysis of Bayesian methods (D is treated as a random quantity).

@ Theoretical tool to analyse the relationship between training loss and test loss:

Expected Loss < Train Loss + Complexity
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Generalization Analysis of Bayesian learning

PAC-Bayes Bounds

@ Frequentist analysis of Bayesian methods (D is treated as a random quantity).

@ Theoretical tool to analyse the relationship between training loss and test loss:
Expected Loss < Train Loss + Complexity

o Expected Loss of Bayesian learning:

CE(p(6|D)) =E [—InE,q ) [pylx,0)]]
N—— —
Bayesian Expected Loss Bayesian Model Averaging
° is the data-generating distribution and D ~
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PAC-Bayesian Analysis of Bayesian Priors

PAC-Bayesian Bound (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

@ For any prior () independent of D and any A > 0,

w.p. (1-96)
~~  LMx(m,D) Ri(x) In3
E < - d —3
CE(pr) ~ ni u n u n

Bayesian Expected Loss

PAC-Bayes bound
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where denotes the generalized Bayesian posterior,
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where denotes the generalized Bayesian posterior,

o p(D|6) ()

where LMy (m, D) denotes the log-marginal:

LM (m, D) = InE,[p(D|0)]
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PAC-Bayesian Analysis of Bayesian Priors

PAC-Bayesian Bound (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

@ For any prior () independent of D and any A > 0,

w.p. (1-96)
~~  LMx(m,D) Ri(x) In3
E < - d —3
CE(pr) ~ ni u n u n

Bayesian Expected Loss PAC-Bayes bound

where denotes the generalized Bayesian posterior,

o p(D|6) ()

where LMy (m, D) denotes the log-marginal:

LM (m, D) = InE,[p(D|0)]

where Rx(7) is a cummulant generating function, which can be expressed as:

Rx(m) =1In IEWD[GM(L(G)fﬁ(e,D))}
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PAC-Bayesian Analysis of Bayesian Priors

o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-8) R
CEQ) 7 _LMx(r,D)  Ra(m) g
—— ~ n An An

Bayesian Expected Loss

PAC-Bayes bound
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o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-8) R
CEQ) 7 _LMx(r,D)  Ra(m) g
—— ~ n An An

Bayesian Expected Loss PAC-Bayes bound

o Expectation bound: In expectation over different data samples D,

ED[LM,\(W,D)] R,\(ﬂ’)
- ni + n

Deterministic bound

Ep[CE(pz)] <
———

Bayesian Expected Loss
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PAC-Bayesian Analysis of Bayesian Priors

o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-8) R
CEQ) 7 _LMx(r,D)  Ra(m) g
—— ~ n An An

Bayesian Expected Loss PAC-Bayes bound

o Expectation bound: In expectation over different data samples D,

ED[LM,\(W,D)] R,\(ﬂ’)
- ni + n

Deterministic bound

Ep[CE(pz)] <
———

Bayesian Expected Loss

@ According to these bounds, small predictive loss is attained if:
o —LM(m, D) and Rj(m) are both small.

o Both depends on the prior 7(8).

o Which priors 7(0) make these two terms small?
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PAC-Bayesian Analysis of Bayesian Priors
The Log-Marginal Likelihood

LM x(w, D) = InE.[p(D|6)*]
o Widely used in Bayesian model comparison.

@ Measures how well our model class explains the data.

@ Depends on the prior 7(0).
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LM x(w, D) = InE.[p(D|6)*]
o Widely used in Bayesian model comparison.
@ Measures how well our model class explains the data.

@ Depends on the prior 7(0).

Theorem: Informative Priors improves the log-marginal likelihood

o Let mo(0) be a flat or reference prior.

@ We build an informative prior using (expected) Bayesian updating:

71(0) = Epryn [pj\ro (6|D")]
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PAC-Bayesian Analysis of Bayesian Priors
The Log-Marginal Likelihood

LM x(w, D) = InE.[p(D|6)*]
o Widely used in Bayesian model comparison.
@ Measures how well our model class explains the data.

@ Depends on the prior 7(0).

Theorem: Informative Priors improves the log-marginal likelihood

o Let mo(0) be a flat or reference prior.

@ We build an informative prior using (expected) Bayesian updating:
71(8) = Eprnyn [p2,(8]1D")]
@ Then, we have that
Ep~un[—LM (71, D)] < Epaun[—LM (70, D)]

@ Informative priors reduce, in expectation, the negative log-marginal likelihood.
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PAC-Bayesian Analysis of Bayesian Priors

o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-8) R
CEQ) 2 _LMx(r,D)  Ra(m) g
—— ~ n An An

Bayesian Expected Loss PAC-Bayes bound

o Expectation bound: In expectation over different data samples D,

ED[LM,\(W,D)] R,\(ﬂ’)
- nA + n

Deterministic bound

Ep[CE(p7)] <
——

Bayesian Expected Loss
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PAC-Bayesian Analysis of Bayesian Priors

o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-8) R
CEQ) 2 _LMx(r,D)  Ra(m) g
—— ~ n An An

Bayesian Expected Loss PAC-Bayes bound

o Expectation bound: In expectation over different data samples D,

ED[LM,\(W,D)] R,\(ﬂ’)
- nA + n

Deterministic bound

Ep[CE(p7)] <
——

Bayesian Expected Loss

o Informative priors reduce the LMy (r, D) term:
o But not enough to guarantee generalization performance.

o Which priors reduce the Ry () term?
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PAC-Bayesian Analysis of Bayesian Priors

Proposition: R (7) is a prior regularizer

Over joint draws of 8 ~ w(0) and D ~ v™(x,y), we have that

w.p. (1-9)
- - 1 1 1
—_—

Overfitting

o If Ry(m) is small, then (@) prefers models with small overfitting.
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PAC-Bayesian Analysis of Bayesian Priors

Proposition: R (7) is a prior regularizer

Over joint draws of 8 ~ w(0) and D ~ v™(x,y), we have that

w.p. (1-9)
- - 1 1 1
—_—

Overfitting

o If Ry(m) is small, then (@) prefers models with small overfitting.

Proposition: R, () is a prior regularizer

@ Rx(m) > 0 for any prior w(€) and any A > 0.
@ Rx(m) = 0iif w(0) is Dirac-Delta distribution around 6,

L(6g) — L(69,D) =0
—_—
Overfitting

o E.g., A neural network with all the weights set to zero.
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PAC-Bayesian Analysis of Bayesian Priors
The Information-Regularization Trade-off

o PAC-Bayesian bound: For any prior w(0) independent of D and any A > 0, ,

w.p. (1-9) R
CEQ) ™ LM(m, D) LB Iny
—— ~ n An An

Bayesian Expected Loss PAC-Bayes bound

o Expectation bound: In expectation over different data samples D,

ED[LMA(TUD)] RA(TI')
. ni * An

Deterministic bound

Ep[CE(p:)] <
———

Bayesian Expected Loss

@ Priors minimizing these upper-bounds face a trade-off:
o Informative priors reduce LM y(r, D).

o Regularizing priors reduce R (7).
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PAC-Bayesian Analysis of Bayesian Priors
Theorem: Optimal Priors

o If mo(0) is a flat or reference prior.

o We define a new priors as:

—nJy, (0,))
m(0) x  7(0) e

Informative Prior Regularizing Prior

where J, (0, A) is the so-called Jensen-Gap function, defined as:

Ju(0,A) = InE, [p(y[x, 0)] — E, [Inp(y|x, 0)]
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o We define a new priors as:

—nJy, (0,))
m(0) x  7(0) e

Informative Prior Regularizing Prior

where J, (0, A) is the so-called Jensen-Gap function, defined as:

Ju(0,A) = InE, [p(y[x, 0)] — E, [Inp(y|x, 0)]

@ Then, we have that

Ep[LM (1, D)] L Ba(m) _ _ Ep[LM (o, D)] . Ba(mo)

ni n nA n

Upper bound for 71 (8) Upper bound for m( (8)

Ep[CE(pr,)] < -
———

Bayesian Expected Loss
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PAC-Bayesian Analysis of Regularizing Priors

o We define an Jensen-Gap prior:
m7(0) e v (02
o Naturally emerges when minimizing a (PAC-Bayes) upper-bound over the Bayesian
Expected Loss.

@ Proposition: For any 8 € ©, over random draws of D ~ v"(x,y), we have that

w.p. (1-9)
. ~ 1 1
LO)—-L(6,D) < )\—JV(G A) + o ng (2)
| S —

Overfitting

o m7(0) assigns low probability to models with high risk of overfitting.

o 7;(0) addresses overfitting (i.e., a regularizing prior).

o It is a functional prior.
o The prior depends on p(y | x,0) and the
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7w7(0) and existing regularization methods.

MAP estimate using 7;(0)

Omap = arg mgxpir] (6|D)

Inm;(0)

An
N——

log Prior

= arg mein L(6,D) —

Ju (0, )

A
—

Regularizer

= arg mgin[i(@7 D) +



7w7(0) and existing regularization methods.

MAP estimate using 7;(0)

Omap = arg mg'xpi\rJ (6|D)

Inm;(0)

An
N——

log Prior

= arg mein L(6,D) —

= argmeinﬁ(ﬂ,D) + @
N——

Regularizer
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7w7(0) and existing regularization methods.

w7(0) and frequentist estimation theory

Proposition: Under a 2nd-order Taylor approximation of J, (6, \) wrt X:

Jo(0,)) ~ A;VDW (L(O,D))

@ Connection with frequentist estimation theory:
o L(0, D) is an unbiased estimator of L(8).
o Vpuun (ﬁ(O, D)) is the variance of the estimator.

@ Regularization means preferring models with low variance.

o For low variance models, (6, D) is a better estimator of L().

o Existing literature: (Namkoong et al. 2017), (Xie et al., 2021), etc.
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7w7(0) and existing regularization methods.

77(0) and L2 regularization (i.e., zero-centered Gaussian priors)

Proposition: For a logistic regression model and under a 2nd-order Taylor approximation
of J,(6,\) wrt 6:

J.(8,)) =~ 0.250°0" Cov, (yx)0
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7w7(0) and existing regularization methods.

77(0) and L2 regularization (i.e., zero-centered Gaussian priors)

Proposition: For a logistic regression model and under a 2nd-order Taylor approximation
of J,(6,\) wrt 6:

Ju(0,)) = 0.25)°6" Cov, (yx)8
@ 7;(0) would be a multivariate normal distribution:

—n0.25X267 Cov,, (yx)0

m1(0) x e
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Ju(0,)) = 0.25)°6" Cov, (yx)8
@ 7;(0) would be a multivariate normal distribution:

_ )5/
ﬂ'J(e) 5% @ n0.252“6" Cov, (yx)0

o If the data is normalized and features are conditionally independent, it is equal to
L2-regularization ,

6" Cov, (yx)0 = 0" k16 = k||6]°
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Ju(0,)) = 0.25)°6" Cov, (yx)8
@ 7;(0) would be a multivariate normal distribution:

_ )5/
ﬂ'J(e) 5% @ n0.252“6" Cov, (yx)0

o If the data is normalized and features are conditionally independent, it is equal to
L2-regularization ,

6" Cov, (yx)0 = 0" k16 = k||6]°

o Explains why L2-regularization improves generalization:

o Small-norm models tends to have lower variance.
o Lower variance implies better estimators L(D, 0).
o Better estimators leads to less overfitting.
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7w7(0) and existing regularization methods.

77(0) and L2 regularization (i.e., zero-centered Gaussian priors)

Proposition: For a logistic regression model and under a 2nd-order Taylor approximation
of J,(6,\) wrt 6:

Ju(0,)) = 0.25)°6" Cov, (yx)8
@ 7;(0) would be a multivariate normal distribution:

_ 29T .
ﬂ'J(e) 5% @ n0.252“6" Cov, (yx)0

o If the data is normalized and features are conditionally independent, it is equal to
L2-regularization ,

6" Cov, (yx)0 = 0" k16 = k||6]°

o Explains why L2-regularization improves generalization:

o Small-norm models tends to have lower variance.
o Lower variance implies better estimators L(D, 0).
o Better estimators leads to less overfitting.

o Also explains the limitations of L2-regularization:

o L2-regularization does not take into account parameter correlations.
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7w7(0) and existing regularization methods.

Cov, (yx)

of LI

-

15
|
| ...
20 "
‘ — ‘
0 5 10 15 20

Mushroom Dataset:

0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

0.6

0.5

0.4

0.3

0.2

0.1

Different Regularizers

== [(D,6)
- L(6)

v(6)

No reg L2

Jensen  Jensen

@ Attributes are highly conditionally (un)correlated.

o Cov, (yx) very different from a identity matrix.

@ L2 performs poorly.
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7w7(0) and existing regularization methods.

Cov, (yx)
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@ Attributes are not conditionally correlated.

o Cov, (yx) very similar to identity matrix.

@ L2 performs well.
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7w7(0) and existing regularization methods.

More connections with existing regularizations

@ For linear regression models, 7;(0) is directly related to g-priors (Zellner, 1986).

o 7;(0) is directly related to input gradient-normalization (Drucker et al., 1992,
Varga et al., 2017).

@ Working with more connections with other regularization techniques.
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Conclusions and Future/Ongoing Works

@ PAC-Bayesian bounds and the generalization performance of Bayesian methods.
o Generalization is a key property in machine learning.

@ PAC-Bayesian bounds allow to better understand Bayesian priors.
o Open problem in Bayesian statistics.
o We can explain the role of regularizing and informative priors.
o Explain why (some) regularization methods work.

@ PAC-Bayesian bounds allow to identify and correct weaknesses of Bayesian
methods.
o When learning under model misspecification, Bayesian posterior is not optimal
(Masegosa, 2020).
o We can get better performance for the same price.
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o PAC-Bayesian bounds allow to better understand ensembles.
Ortega et al. Diversity and Generalization in Neural Network Ensembles. AISTATS 2022.
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