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Bayesian machine learning
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The Bayesian approach to Machine Learning

Bayesian machine learning

Bayesian methods are widely used in machine learning.

They provide well founded approach for dealing with model uncertainty.

Random variables + Probability Calculus.

They automatically account for model complexity.

They allow to combine data with prior knowledge.
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The Bayesian approach to Machine Learning

Probabilistic Model

Conditional generative models: p(y|x,θ).
Generative models: p(x|θ).

Bayesian Posterior

p(θ|D)︸ ︷︷ ︸
Bayesian posterior

=

Likelihood︷ ︸︸ ︷
p(D|θ)∫

p(D|θ)π(θ)dθ︸ ︷︷ ︸
Normalization Constant

Prior︷︸︸︷
π(θ)

We have to resort to approximations to compute the integral.

Bayesian model averaging

p(ytest | xtest, D)︸ ︷︷ ︸
Predictive posterior

=

∫ Model’s prediction︷ ︸︸ ︷
p(ytest | xtest,θ) p(θ|D)︸ ︷︷ ︸

Bayesian posterior

dθ
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Bayesian Priors in Bayesian Machine Learning
(work in progress)
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Bayesian Priors

Bayesian Priors in Bayesian Statistics

(Weakly) Informative Priors

Priors providing information about the data generating process.

(Non-informative) Reference Priors

Priors minimizing the impact they have in the Bayesian posterior.

Bayesian Priors in Machine Learning

Regularizing Priors (e.g., zero centered Gaussian distributions)

Promote small norm parameter that reduce overfitting.
Overwhelming empirical evidence.
Connections with L2, L1, etc. through MAP learning.

What are Regularizing Priors?

Reference priors, (Weakly) Informative priors or something different.

How a Bayesian prior should look like to guarantee generalization performance?
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Regularizing Priors

Main Conclusion (Take Away Message)

Regularizing Priors introduce a biased against high-variance models.

For a fixed θ,

We treat D as a random variable, D ∼ ν(y,x) (and DTest ∼ ν(y,x)).

Training Loss: L̂(D,θ) = − 1
n
ln p(D|θ).

Expected Loss: L(θ) = ED[− 1
n
ln p(D|θ)] = Eν [− ln p(y | x,θ)].

Variance of the training Loss: V(θ) = Vν(
1
n
ln p(D|θ)).

If V(θ) is large, then θ is an unreliable model.

Training loss can be small and Expected loss can be large.

Generalization requires penalizing high-variance models.

This should be encoded in the prior:

πJ(θ) ∝ e−V(θ)

Connected to Gaussian zero-centered priors and other regularizing priors.
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Generalization Analysis of Bayesian learning

PAC-Bayes Bounds

Frequentist analysis of Bayesian methods (D is treated as a random quantity).

Theoretical tool to analyse the relationship between training loss and test loss:

Expected Loss ≤ Train Loss+ Complexity

Expected Loss of Bayesian learning:

CE(p(θ|D))︸ ︷︷ ︸
Bayesian Expected Loss

= Eν(y,x)[− ln Ep(θ|D)[p(y|x,θ)]︸ ︷︷ ︸
Bayesian Model Averaging

]

ν(y,x) is the data-generating distribution and D ∼ ν(y,x).
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PAC-Bayesian Analysis of Bayesian Priors

PAC-Bayesian Bound (Alquier et al. 2016, Germain et al. 2016, Masegosa 2020)

For any prior π(θ) independent of D and any λ > 0,

CE(pλπ)︸ ︷︷ ︸
Bayesian Expected Loss

w.p. (1−δ)︷︸︸︷
≲ −

ˆLMλ(π,D)

nλ
+

Rλ(π)

λn
+

ln 1
δ

λn︸ ︷︷ ︸
PAC-Bayes bound

where pλπ denotes the generalized Bayesian posterior,

pλπ(θ|D) ∝ p(D|θ)λπ(θ)

where ˆLMλ(π,D) denotes the log-marginal:

ˆLMλ(π,D) = lnEπ[p(D|θ)λ]

where Rλ(π) is a cummulant generating function, which can be expressed as:

Rλ(π) = lnEπD[eλn(L(θ)−L̂(θ,D))]
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PAC-Bayesian Analysis of Bayesian Priors

Upper Bounds

PAC-Bayesian bound: For any prior π(θ) independent of D and any λ > 0, ,

CE(pλπ)︸ ︷︷ ︸
Bayesian Expected Loss

w.p. (1−δ)︷︸︸︷
≲ −

ˆLMλ(π,D)

nλ
+

Rλ(π)

λn
+

ln 1
δ

λn︸ ︷︷ ︸
PAC-Bayes bound

Expectation bound: In expectation over different data samples D,

ED[CE(pλπ)]︸ ︷︷ ︸
Bayesian Expected Loss

≤ −ED[ ˆLMλ(π,D)]

nλ
+

Rλ(π)

λn︸ ︷︷ ︸
Deterministic bound

According to these bounds, small predictive loss is attained if:

− ˆLMλ(π,D) and Rλ(π) are both small.

Both depends on the prior π(θ).

Which priors π(θ) make these two terms small?
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PAC-Bayesian Analysis of Bayesian Priors

The Log-Marginal Likelihood

ˆLMλ(π,D) = lnEπ[p(D|θ)λ]

Widely used in Bayesian model comparison.

Measures how well our model class explains the data.

Depends on the prior π(θ).

Theorem: Informative Priors improves the log-marginal likelihood

Let π0(θ) be a flat or reference prior.

We build an informative prior using (expected) Bayesian updating:

πI(θ) = ED′∼νn [pλπ0
(θ|D′)]

Then, we have that

ED∼νn [− ˆLMλ(πI , D)] ≤ ED∼νn [− ˆLMλ(π0, D)]

Informative priors reduce, in expectation, the negative log-marginal likelihood.
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PAC-Bayesian Analysis of Bayesian Priors

Upper Bounds

PAC-Bayesian bound: For any prior π(θ) independent of D and any λ > 0, ,
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ˆLMλ(π,D)

nλ
+

Rλ(π)

λn
+

ln 1
δ
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PAC-Bayes bound

Expectation bound: In expectation over different data samples D,

ED[CE(pλπ)]︸ ︷︷ ︸
Bayesian Expected Loss

≤ −ED[ ˆLMλ(π,D)]

nλ
+

Rλ(π)

λn︸ ︷︷ ︸
Deterministic bound

Informative priors reduce the ˆLMλ(π,D) term:

But not enough to guarantee generalization performance.

Which priors reduce the Rλ(π) term?
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PAC-Bayesian Analysis of Bayesian Priors

Proposition: Rλ(π) is a prior regularizer

Over joint draws of θ ∼ π(θ) and D ∼ νn(x,y), we have that

L(θ)− L̂(θ, D)︸ ︷︷ ︸
Overfitting

w.p. (1−δ)︷︸︸︷
≲

1

λn
Rλ(π) +

1

λn
ln

1

δ
. (1)

If Rλ(π) is small, then π(θ) prefers models with small overfitting.

Proposition: Rλ(π) is a prior regularizer

Rλ(π) ≥ 0 for any prior π(θ) and any λ ≥ 0.

Rλ(π) = 0 iif π(θ) is Dirac-Delta distribution around θ0,

L(θ0)− L̂(θ0, D)︸ ︷︷ ︸
Overfitting

= 0

E.g., A neural network with all the weights set to zero.
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PAC-Bayesian Analysis of Bayesian Priors

The Information-Regularization Trade-off

PAC-Bayesian bound: For any prior π(θ) independent of D and any λ > 0, ,

CE(pλπ)︸ ︷︷ ︸
Bayesian Expected Loss

w.p. (1−δ)︷︸︸︷
≲ −

ˆLMλ(π,D)

nλ
+

Rλ(π)

λn
+

ln 1
δ

λn︸ ︷︷ ︸
PAC-Bayes bound

Expectation bound: In expectation over different data samples D,

ED[CE(pλπ)]︸ ︷︷ ︸
Bayesian Expected Loss

≤ −ED[ ˆLMλ(π,D)]

nλ
+

Rλ(π)

λn︸ ︷︷ ︸
Deterministic bound

Priors minimizing these upper-bounds face a trade-off:

Informative priors reduce ˆLMλ(π,D).

Regularizing priors reduce Rλ(π).
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PAC-Bayesian Analysis of Bayesian Priors

Theorem: Optimal Priors

If π0(θ) is a flat or reference prior.

We define a new priors as:

π1(θ) ∝ πI(θ)︸ ︷︷ ︸
Informative Prior

e−nJν(θ,λ)︸ ︷︷ ︸
Regularizing Prior

where Jν(θ, λ) is the so-called Jensen-Gap function, defined as:

Jν(θ, λ) = lnEν [p(y|x,θ)]− Eν [ln p(y|x,θ)]

Then, we have that

ED[CE(pλπ1
)]︸ ︷︷ ︸

Bayesian Expected Loss

≤ −ED[ ˆLMλ(π1, D)]

nλ
+

Rλ(π1)

λn︸ ︷︷ ︸
Upper bound for π1(θ)

≤ −ED[ ˆLMλ(π0, D)]

nλ
+

Rλ(π0)

λn︸ ︷︷ ︸
Upper bound for π0(θ)
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π1(θ) ∝ πI(θ)︸ ︷︷ ︸
Informative Prior

e−nJν(θ,λ)︸ ︷︷ ︸
Regularizing Prior

where Jν(θ, λ) is the so-called Jensen-Gap function, defined as:

Jν(θ, λ) = lnEν [p(y|x,θ)]− Eν [ln p(y|x,θ)]

Then, we have that

ED[CE(pλπ1
)]︸ ︷︷ ︸

Bayesian Expected Loss

≤ −ED[ ˆLMλ(π1, D)]

nλ
+

Rλ(π1)

λn︸ ︷︷ ︸
Upper bound for π1(θ)

≤ −ED[ ˆLMλ(π0, D)]

nλ
+

Rλ(π0)

λn︸ ︷︷ ︸
Upper bound for π0(θ)
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PAC-Bayesian Analysis of Regularizing Priors

Regularizing Prior

We define an Jensen-Gap prior:

πJ(θ) ∝ e−nJν(θ,λ)

Naturally emerges when minimizing a (PAC-Bayes) upper-bound over the Bayesian
Expected Loss.

Proposition: For any θ ∈ Θ, over random draws of D ∼ νn(x,y), we have that

L(θ)− L̂(θ, D)︸ ︷︷ ︸
Overfitting

w.p. (1−δ)︷︸︸︷
≲

1

λn
Jν(θ, λ) +

1

λn
ln

1

δ
. (2)

πJ(θ) assigns low probability to models with high risk of overfitting.

πJ(θ) addresses overfitting (i.e., a regularizing prior).

It is a functional prior.
The prior depends on p(y | x,θ) and the ν(y,x).
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πJ(θ) and existing regularization methods.

MAP estimate using πJ(θ)

θMAP = argmax
θ

pλπJ
(θ|D)

= argmin
θ

L̂(θ, D)− lnπJ(θ)

λn︸ ︷︷ ︸
log Prior

= argmin
θ

L̂(θ, D) +
Jν(θ, λ)

λ︸ ︷︷ ︸
Regularizer
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πJ(θ) and existing regularization methods.

πJ(θ) and frequentist estimation theory

Proposition: Under a 2nd-order Taylor approximation of Jν(θ, λ) wrt λ:

Jν(θ, λ) ≈
λ2

2
VD∼νn

(
L̂(θ, D)

)
Connection with frequentist estimation theory:

L̂(θ, D) is an unbiased estimator of L(θ).

VD∼νn

(
L̂(θ, D)

)
is the variance of the estimator.

Regularization means preferring models with low variance.

For low variance models, L̂(θ, D) is a better estimator of L(θ).

Existing literature: (Namkoong et al. 2017), (Xie et al., 2021), etc.
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πJ(θ) and existing regularization methods.

πJ(θ) and L2 regularization (i.e., zero-centered Gaussian priors)

Proposition: For a logistic regression model and under a 2nd-order Taylor approximation
of Jν(θ, λ) wrt θ:

Jν(θ, λ) ≈ 0.25λ2θTCovν(yx)θ

πJ(θ) would be a multivariate normal distribution:

πJ(θ) ∝ e−n0.25λ2θT Covν(yx)θ

If the data is normalized and features are conditionally independent, it is equal to
L2-regularization ,

θTCovν(yx)θ = θT kIθ = k||θ||2

Explains why L2-regularization improves generalization:

Small-norm models tends to have lower variance.
Lower variance implies better estimators L̂(D,θ).
Better estimators leads to less overfitting.

Also explains the limitations of L2-regularization:

L2-regularization does not take into account parameter correlations.
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πJ(θ) and existing regularization methods.

Covν(yx) Different Regularizers
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Mushroom Dataset:

Attributes are highly conditionally (un)correlated.

Covν(yx) very different from a identity matrix.

L2 performs poorly.
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πJ(θ) and existing regularization methods.

Covν(yx) Different Regularizers
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Adult Dataset:

Attributes are not conditionally correlated.

Covν(yx) very similar to identity matrix.

L2 performs well.
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πJ(θ) and existing regularization methods.

More connections with existing regularizations

For linear regression models, πJ(θ) is directly related to g-priors (Zellner, 1986).

πJ(θ) is directly related to input gradient-normalization (Drucker et al., 1992,
Varga et al., 2017).

Working with more connections with other regularization techniques.
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Conclusions and Future Works
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Conclusions and Future/Ongoing Works

PAC-Bayesian bounds and the generalization performance of Bayesian methods.
Generalization is a key property in machine learning.

PAC-Bayesian bounds allow to better understand Bayesian priors.
Open problem in Bayesian statistics.
We can explain the role of regularizing and informative priors.
Explain why (some) regularization methods work.

PAC-Bayesian bounds allow to identify and correct weaknesses of Bayesian
methods.

When learning under model misspecification, Bayesian posterior is not optimal
(Masegosa, 2020).
We can get better performance for the same price.

PAC-Bayesian bounds allow to better understand ensembles.
Ortega et al. Diversity and Generalization in Neural Network Ensembles. AISTATS 2022.

Future/Ongoing works:
Explain the Cold Posterior Effect (Wenzel et al., 2020).

Thanks for you attention!! :D
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