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Introduction and Motivation



Introduction: Ensembles of Neural Networks
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• Ensembles of NNs are recently getting a lot of attention.
• Provide better uncertainty quantification.

• More robust to Out-Distribution-Data.

• Key properties in many real-world applications.

• Ongoing debate of why ensembles of NNs work so well:
• Ensemble’s diversity is widely used to justify ensemble performance.
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Introduction: What is ensemble’s diversity?

• Ensemble’s diversity is a broad concept:

• Ensemble’s performance jointly depends of the individual model’s

performance and the diversity among them.

• An ensemble has null diversity if the predictions of individual models

coincide on all the samples.

• No advantage of having an ensemble when diversity is null.

• Theoretically, diversity is not a well-established concept:

• Different names: ambiguity, disagreement, etc.

• Many different proposals to define diversity.

• No theoretical analysis covering different different ensembles.
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Our Contributions

• We built on previously published results:

• (Krogh and Vedelsby, 1994): Ensemble of regression models.

• (Masegosa, 2020): Bayesian model averaging.

• (Masegosa et al., 2020): Weighted Majority Vote.

• We introduce a theoretical framework to answer these questions:

1) How to measure the diversity of an ensemble?.

2) How is diversity related to the ensemble’s generalization performance?.

3) How can diversity be promoted by ensemble learning algorithms?.

• We derive a common framework for different types of ensembles.
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Previous Knowledge



Basics on NNs ensembles

An ensemble trained with D = {(x1, y1), . . . , (xn, yn)} is the combination

of different predictors.

Input

. . .

Predictor
with parameters

Predictor
with parameters

Predictor
with parameters
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Different Ensemble Methods

Regression Ensemble: Multiple regression models.

• Weighted Model Averaging: MAρ(x) = Eθ∼ρ[hθ(x)].

• Squared loss :

Lsq(θ) = Eν [(hθ(x)− y)2] Lsq(ρ) = Eν [(MAρ(x)− y)2]

Probabilistic Ensemble: Multiple probabilistic classification models.

• Weighted Model Averaging

• Cross-entropy loss

Majority Vote Ensemble: Multiple classification models.

• Weighted Majority Vote

• Zero-one loss
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Diversity and Ensembles’

Performance



Diversity and Generalization

Theorem 1

General Upper-bound for all the ensembles considered in this work:

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(

Eρ[L(θ)]︸ ︷︷ ︸
Individual Models’
Expected Loss

− D(ρ)︸︷︷︸
Ensemble’s
Diversity

)

where α = 4 for the 0/1-loss, otherwise, α = 1.

The diversity term depends on the considered loss function:

D(ρ) = Eν
[
Vρ (f (y , x ;θ))

]
.

• Ensemble’s performance depends on both individual models’

performance and diversity.
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How to measure diversity?

Regression Ensemble: Multiple regression models.

Dsq(ρ) = Eν
[
Vρ(hθ(x))

]

Probabilistic Ensemble: Multiple probabilistic classification models.

Dce(ρ) = Eν
[
Vρ
(

p(y | x ,θ)√
2 maxθ p(y | x ,θ)

)]
Majority Vote Ensemble: Multiple classification models.

D0/1(ρ) = Eν
[
Vρ
(
1(hθ(x) 6= y)

)]
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Is D(ρ) a diversity measure?

A General Measure of Diversity:

D(ρ) = Eν
[
Vρ (f (y , x ;θ))

]
.

Lemma

i) D(ρ) ≥ 0

ii) If all individual models provide the same predictions, then D(ρ) = 0.

iii) 0 ≤ D(ρ) ≤ Eρ[L(θ)].

iv) D(ρ) is invariant to reparametrizations.
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How to measure diversity?

A General Measure of Diversity:

D(ρ) = Eν
[
Vρ (f (y , x ;θ))

]
Theorem

The diversity term D(ρ) can be written as

D(ρ) = Vν×ρ
(
f (y , x ;θ)

)
− Eρ×ρ

[
Covν(f (y , x ;θ), f (y , x ;θ′))

]
where Covν(·, ·) is the co-variance between two models.

• First term helps to explain why randomized models improve

ensemble performance.

• Second term helps to explain why independent and anti-correlated

models improve ensemble performance.
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How is Diversity Related to the

Performance of an Ensemble?



Diversity and Generalization

Theorem 1

General Upper-bound for all the ensembles considered in this work:

L(ρ)︸︷︷︸
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How is Diversity Related to the Performance of an Ensemble?

A General Measure of Diversity:

D(ρ) = Eν
[
Vρ (f (y , x ;θ))

]
.

Question: How much do we gain by ensembling a set of models wrt

randomly choosing them?

Corollary

Under these settings, we have that

D(ρ) ≤ Eρ[L(θ)]− 1

α
L(ρ)︸ ︷︷ ︸

Ensemble’s Gap

Answer: Larger diversity induces larger gains.
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How is Diversity Related to the Performance of an Ensemble?

A General Measure of Diversity:
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How to Exploit Diversity to Learn

Ensembles?



Diversity and Generalization

Theorem 1

General Upper-bound for all the ensembles considered in this work:

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(

Eρ[L(θ)]︸ ︷︷ ︸
Individual Models’
Expected Loss

− D(ρ)︸︷︷︸
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Diversity

)

where α = 4 for the 0/1-loss, otherwise, α = 1.

• This inequality depends on the data generating distribution.
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How to Exploit Diversity to Learn Ensembles?

A PAC-Bayesian Bound

For distribution π(θ) independent of D, with probability at least 1− δ
over draws of training data D ∼ νn(y , x) (i.e., i.i.d.), for all λ > 0, for

all distribution ρ over Θ, simultaneously,

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(
Eρ[L̂(θ,D)]︸ ︷︷ ︸

Averaged
Empirical Loss

− D̂(ρ,D)︸ ︷︷ ︸
Ensemble’s

Empirical Diversity

+
2KL (ρ | π)

λn︸ ︷︷ ︸
Regularization

+
ε(ν, π, λ, n, δ)

λn

)

• Find the ρ minimizing this PAC-Bayesian Bound.

• We move to a continuous hypothesis space.

14



How to Exploit Diversity to Learn Ensembles?

A PAC-Bayesian Bound

For distribution π(θ) independent of D, with probability at least 1− δ
over draws of training data D ∼ νn(y , x) (i.e., i.i.d.), for all λ > 0, for

all distribution ρ over Θ, simultaneously,

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(
Eρ[L̂(θ,D)]︸ ︷︷ ︸

Averaged
Empirical Loss

− D̂(ρ,D)︸ ︷︷ ︸
Ensemble’s

Empirical Diversity

+
2KL (ρ | π)

λn︸ ︷︷ ︸
Regularization

+
ε(ν, π, λ, n, δ)

λn

)

• Find the ρ minimizing this PAC-Bayesian Bound.

• We move to a continuous hypothesis space.

14



How to Exploit Diversity to Learn Ensembles?

A PAC-Bayesian Bound

For distribution π(θ) independent of D, with probability at least 1− δ
over draws of training data D ∼ νn(y , x) (i.e., i.i.d.), for all λ > 0, for

all distribution ρ over Θ, simultaneously,

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(
Eρ[L̂(θ,D)]︸ ︷︷ ︸

Averaged
Empirical Loss

− D̂(ρ,D)︸ ︷︷ ︸
Ensemble’s

Empirical Diversity

+
2KL (ρ | π)

λn︸ ︷︷ ︸
Regularization

+
ε(ν, π, λ, n, δ)

λn

)

• Find the ρ minimizing this PAC-Bayesian Bound.

• We move to a continuous hypothesis space.

14



How to Exploit Diversity to Learn Ensembles?

Ensemble Learning algorithm as a mixture model

ρ(θ|θ1, . . . ,θK , σ2) =
1

K

K∑
k=1

N (θ; θk , σ
2I ).

Learning Objective (P2B-Ensemble)

min
θ1,...,θK

Eρ[L̂(θ,D)]︸ ︷︷ ︸
Averaged

Empirical Loss

− D̂(ρ,D)︸ ︷︷ ︸
Ensemble’s

Empirical Diversity

− 2Eρ[lnπ(θ)]

λn︸ ︷︷ ︸
Regularization
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Empirical Validation



Empirical validation: Experimental Settings

Tasks

• Regression Task: Wine-Quality dataset.

• Classification Task: Cifar10 and Cifar100 data sets.

Models

• Regression Task: MLP with 50 hidden units.

• Classification Task: LeNet5 and ResNet20 convolutional networks.

Learning Algorithms

• P2B-Ensemble: K models jointly learned promoting diversity.

• Ensemble: K models independently learned.
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Ensemble Learning

(Manish Kumar, 2018)

• Ensemble composed by K different local minima.
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Empirical Validation
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• Higher diversity correlates with higher gains by ensembling.

• Standard ensemble methods implicitly promote diversity.

• P2B-Ensemble finds ensembles with higher diversity.
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Empirical validation
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• Higher diversity correlates with higher gains by ensembling.
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Empirical validation
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• Explicitly promoting diversity (ie. P2B-Ensemble) gives rise to better

ensembles.

• But not always...
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Empirical validation
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• P2B-Ensemble is not able to learn better ensembles.

• Why?
• Because big neural networks works in the interpolation regime.

21



Empirical validation

Lce(ρ)  ρ[Lce(θ)]  ⅅce(ρ)
0.0

0.1

0.2

0.3

0.4

0.5
ce-loss

Ensemble
P2B-Ensemble

CIFAR-10 ResNet20

L0/1(ρ)  ρ[L0/1(θ)]  ⅅ0/1(ρ)
0.00

0.02

0.04

0.06

0.08

0.10

0/1-loss
Ensemble
P2B-Ensemble

CIFAR-10 ResNet20

• P2B-Ensemble is not able to learn better ensembles.
• Why?

• Because big neural networks works in the interpolation regime.
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How to Exploit Diversity to Learn Ensembles?

Learning Objective

min
θ1,...,θK

Eρ[L̂(θ,D)]︸ ︷︷ ︸
Averaged

Empirical Loss

− D̂(ρ,D)︸ ︷︷ ︸
Ensemble’s

Empirical Diversity

− 2Eρ[lnπ(θ)]

λn︸ ︷︷ ︸
Regularization

Inequality

0 ≤ D̂(ρ,D) ≤ Eρ[L̂(θ,D)]

In the interpolation regime

Eρ[L̂(θ,D)] ≈ 0⇒ D̂(ρ,D) ≈ 0

• The empirical diversity does not provide any signal to the gradient.
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Conclusions and Future Work

Conclusions

• We can formally speak about ensemble’s diversity.

• Applies to very different ensemble methods.

• Useful to understand and derive learning algorithms.

Limitations

• Diversity’s linear dependency: not accurate in all cases (Germain et

al. 2015, Wu et al. 2021)

• Only second-order interactions.

• Learning in the interpolation-regime.

Future Works

• Promote diversity using a external (non-labelled) dataset.
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Questions?

Andrés, L.A.O., Cabañas, R. and Masegosa, A. R.,

Diversity and Generalization in Neural Network

Ensembles. AISTATS 2022.
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Measuring Diversity

• For regression ensembles, (Krogh and Vedelsby, 1994) showed that:

Lsq(ρ)︸ ︷︷ ︸
Ensemble’s

Expected Loss

= Eρ[Eν [(y − hθ(x))2]︸ ︷︷ ︸
Individual Models’
Expected Loss

] − Eν [Eρ[(hθ(x)− Eρ[hθ(x)])2]︸ ︷︷ ︸
Variance among
individual models

]

• Strong ensembles require strong and diverse individual models:

small individual error and high variance.

• Existing literature only contains ad-hoc decompositions for other kind

of ensembles, but there is not a general decomposition.
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Empirical validation

Theorem 1

L(ρ)︸︷︷︸
Ensemble’s

Expected Loss

≤ α
(

Eρ[L(θ)]︸ ︷︷ ︸
Individual Models’
Expected Loss

− D(ρ)︸︷︷︸
Ensemble’s
Diversity

)

where α = 4 for the 0/1-loss, otherwise, α = 1.
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