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Motivation Results

= Empirical fact: Modern architectures often reach near-zero training loss but maintain low test error. = Empirical inverse-rate regularizer fe_l(s) was unestable due to problems estimation optimal \*.

= Limit of classic theory: VC/Rademacher complexity is distribution-agnostic and have a hard time We treated \* as tuneable hyper-paramter

explaining “benign overfitting.”

= New insight (PAC-Chernoff [Masegosa & Ortega, 2025]): The inverse rate function, which is
distribituion dependent, tightly approximates the generalization gap for interpolators.
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= Optimal Regularization: The inverse rate function is an optimal regularizer for interpolators
[Masegosa & Ortega, 2025, Theorem 6.1].

= Problem: Computing that inverse rate function needs unknown distribution information—no oracle
at train time.

= [nverse-Rate Regularization Yields Better-Calibrated Models Table 1 present a summary of results
for a subset of the 19 network architectures. Last rows summarizes the comparison by reporting,
for each metric, how often our method outperforms the baseline across the full set of 19 models.
The inverse-rate regularizer slightly lowers Top-1 accuracy but consistently improves NLL, variance,

= QOur solution: A fast, mini-batch estimator that can be plugged into SGD as the Inverse-Rate . . o . C.
PIUES calibration, and Top-5 accuracy, yielding more reliable predictions overall.

Regularizer, yielding a theoretically grounded regualizarer with promising results.

Table 1. Comparison of the baseline (Base) method (SGD + L2 + data augmentation) versus our inverse-rate regularizer
added on top (Ours).

= Our Contribution: A first step towards operationalise a near-optimal theoretical regularizer with
near-optimal performance.

Prelimi . CIFAR-10 Top1-Acc (1) Top5-Acc (1) NLL ({) Variance ({) ECE (1)
retiminaries Base Qurs Base OQOurs Base OQOurs Base QOurs Base Qurs
Step 1: Cumulant-Generatine Function (CGF mobilenetv?2 xO /5 0.935 0.938 0.998 0.998 0.264 0.254 1.341 1.306 0.040 0.037
P & ( ) repvgg a0 0.945 0.938 0.998 0.998 0.237 0.24/7 1.32/7 1.206 0.036 0.03/
Jo(A) = In B, . [t O~ Hurd)] resnet32 0.934 0.935 0.997 0.998 0295 0.250 1.682 1.205 0.042 0.036
shufflenetv?2 xO 5 0.904 0.891 0.996 0.997 0.335 0.329 1.395 0.940 0.048 0.033
Step 2: Rate Function (Large-Deviation speed) vgel19 bn 0.941 0.934 0.997 0.997 0.332 0.315 2.187 1.878 0.049 0.049
Iy(a) = sup {Aa— Jy(\)) All Models 8/19 13/19 14/19 14/19 11/19

A>0

Step 3: Inverse Rate Function (complexity term) CIFAR-100 Top1-Acc (1) Tops-Acc (1) NLL () variance ({) ECE W)
' ()\> Base OQOurs Base Ours Base OQOurs Base QOurs Base Ours
I;Y(s) = inf 2220 mobilenetv2_x0_75 0.743 0.698 0.930 0.920 1.080 1.053 4.414 2596 0.110 0.044
A>0 A repveg a0 0.755 0.739 0.931 0.931 1.056 1.075 4.272 4452 0.094 0.108
) resnet32 0.696 0.699 0.910 0.920 1.330 1.106 5.851 3.448 0.140 0.077
PAC-Chernoff bounda!: shufflenetv2 xO 5 0.682 0.674 0.902 0.905 1.297 1.199 4.754 3.254 0.118 0.054
vggl9 bn 0.743 0.69/ 0.901 0.891 1./80 1.400 12.966 6.664 0.194 0.142
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LO) < L) + 1, (ﬁ 1HT) All Models 1/19 13/19 16/19 15/19 14/19

Theory (PAC-Chernoff): If a model @ interpolates the data, meaning L(6) < e, then

| L(0) — I ' (3
S

so the inverse rate function 19_1(% In T|> is an exact expression for the generalization gap.

= Sensitivity of the Inverse-Rate regularizer to Hyper-parameters.The results in table 2 show that
p = 0.5 offers the best trade-off across metrics. It consistently outperforms the baseline in terms of
NLL and NLL variance—achieving 12-17 wins out of 19 across datasets—while also maintaining
strong Top-5 accuracy and competitive ECE.
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Consequence = Optimal Regularizer for Interpolators

©)

Table 2. Aggregate win counts comparing the inverse-rate regularizer to the baseline (SGD + L2 + augmentation) across
+ ]9_1(% In T)} —> near-optimal generalization

19 architectures on CIFAR-10 (top) and CIFAR-100 (bottom). Each row corresponds to a specific setting of the
hyper-parameters p and A*. “Best” denotes per-model selection based on validation NLL. For each metric, the table
reports how many times the regularized model outperformed the baseline across the 19 model architectures.
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Method: Overlapping-Batch Estimator & Adaptive Weights

Architecture p  X* Topl-Acc Top5-Acc NLL Variance ECE

CIFAR-10 Best Best 8/19 13/19 14/19 14/19 11/19
mini-batch (m samples) 0.0 Best 0/19 6/19  6/19 19/19 17//19
0.5 Best 0/19 12/19 12/19 19/19 14/19
51 52 1.0 Best 9/19  9/19 10/19 11/19 10/19
p = overiap ratio CIFAR-100 Best Best 1/19  13/19 16/19 15/19 14/19
: : 0.0 Best 0/19 5/19  6/19 17/19 16/19
Overlapping-batch CGF es“matolr | 05 Best 1/19  12/19 17/19 15/19 13/19
T =Ism > e MW O] 4 g 2w 10 Best 2/19  13/19 14/19 15/19 13/19
N zyes e y)es
Empirical inverse-rate regularizer R
F-1(s) = mi s+ Jp(\) Conclusions, Limitations and Future Works
0 S ) = 1111
A>0 A
g Contribution:
Implicit per-sample weight (log-loss) " = |[ntroduced the inverse-rate regularizer — a practical estimator of the theoretically optimal inverse
%_1(8) _ I@[wy,x Uy, z,0) with wyp=1— Ap(y|$a 0) _ (1) rate function — integrated into first-order optimisation.
E[p(y|z, )] = Improved probabilistic quality in 19 CNN architectures on CIFAR-10/100; unified and extended

existing regularisers.
" wy o > 0: under-confident examples.

" wy . < 0: over-confident predictions.
" Elwy ;| = 0 perfectly confident examples.

= Core insight: better estimators of the inverse rate function can lead to principled, near-optimal
regularization.

Limitations:

= Mini-batch estimator is biased and has variance issues in small-sample regimes.

Connections - popular regularizers through the inverse-rate lens = Requires tuning of two hyperparameters

= Experiments limited to log-loss image classification — transferability to other tasks is untested.

Method / family Penalty or objective (typical form) Relation to inverse-rate 1‘9‘1

r(60) = 1|6]]2 I, '(s) < V2M ||0])2 (Prop. 6.2) Future Directions:

/5 weight decay

= Use held-out validation data to reduce selection bias in inverse rate estimation.
= Analyse bias-variance trade-offs and guarantees when n is limited.
= Explore application to regression, structured prediction, and large-scale pre-training.

r(0) = E[|| V]3] Iy (s) < VsM /E[ V. (|3

Input-gradient penalty

Lip(#) bounded via spectral norm It |V.£||2 < Lip(8) the same upper bound on

I, applies
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