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Motivation

Empirical fact: Modern architectures often reach near-zero training loss but maintain low test error.

Limit of classic theory: VC / Rademacher complexity is distribution-agnostic and have a hard time

explaining “benign overfitting.”

New insight (PAC-Chernoff [Masegosa & Ortega, 2025]): The inverse rate function, which is

distribituion dependent, tightly approximates the generalization gap for interpolators.

Optimal Regularization: The inverse rate function is an optimal regularizer for interpolators

[Masegosa & Ortega, 2025, Theorem 6.1].

Problem: Computing that inverse rate function needs unknown distribution information—no oracle

at train time.

Our solution: A fast, mini-batch estimator that can be plugged into SGD as the Inverse-Rate

Regularizer, yielding a theoretically grounded regualizarer with promising results.

Our Contribution: A first step towards operationalise a near-optimal theoretical regularizer with

near-optimal performance.

Preliminaries

Step 1: Cumulant-Generating Function (CGF)

Jθ(λ) = ln E(x,y)∼ν

[
eλ (L(θ) − `(y,x,θ))]

Step 2: Rate Function (Large-Deviation speed)

Iθ(a) = sup
λ≥0

{
λ a − Jθ(λ)

}
Step 3: Inverse Rate Function (complexity term)

I−1
θ (s) = inf

λ>0

s + Jθ(λ)
λ

PAC–Chernoff bound:

L(θ) ≤ L̂(θ) + I−1
θ

(
1
n ln |Θ|

δ

)
Theory (PAC–Chernoff): If a model θ interpolates the data, meaning L̂(θ) ≤ ε, then∣∣L(θ) − I−1

θ (1
n ln |Θ|

δ )
∣∣ ≤ ε,

so the inverse rate function I−1
θ (1

n ln |Θ|
δ ) is an exact expression for the generalization gap.

Consequence ⇒ Optimal Regularizer for Interpolators

min
θ

[
L̂(θ) + I−1

θ (1
n ln |Θ|

δ )
]

=⇒ near-optimal generalization

Method: Overlapping-Batch Estimator & AdaptiveWeights

mini-batch (m samples)

S1 S2

ρ = overlap ratio

Overlapping-batch CGF estimator

Ĵθ(λ) = ln 1
|S1|

∑
(x,y)∈S1

e−λ `(y,x,θ) + λ
1

|S2|
∑

(x,y)∈S2

`(y, x, θ)

Empirical inverse-rate regularizer

Î−1
θ (s) = min

λ>0

s + Ĵθ(λ)
λ

Implicit per-sample weight (log-loss)

Î−1
θ (s) = Ê[wy,x · `(y, x, θ)] with wy,x = 1 − p(y|x, θ)λ?

Ê[p(y|x, θ)λ?]
, (1)

wy,x > 0: under-confident examples.

wy,x < 0: over-confident predictions.
Ê[wy,x] = 0 perfectly confident examples.

Connections – popular regularizers through the inverse-rate lens

Method / family Penalty or objective (typical form) Relation to inverse-rate I−1
θ

`2 weight decay
r(θ) = ‖θ‖2 I−1

θ (s) ≤
√

2M ‖θ‖2 (Prop. 6.2)

Input-gradient penalty r(θ) = E
[
‖∇x`‖2

2
]

I−1
θ (s) ≤

√
sM

√
E‖∇x`‖2

2

Lipschitz constraint Lip(θ) bounded via spectral norm If ‖∇x`‖2 ≤ Lip(θ) the same upper bound on

I−1
θ applies

KL-DRO (DKL ≤ s) sup
q: DKL(q‖P̂n)≤s

L̂q(θ) Dual objective equals L̂(θ) + I−1
θ (s) (Thm. 3)

Focal / Meta-Weight
Per-sample weight (1 − p)γ or learned

wy,x
Heuristic approximation of the inverse-rate

weight wy,x = 1 − pλ?

Ê
[
pλ?

]

Results

Empirical inverse-rate regularizer Î−1
θ (s) was unestable due to problems estimation optimal λ?.

We treated λ? as tuneable hyper-paramter

Î−1
θ (s) ≈ s + Ĵθ(λ?)

λ?

Inverse-Rate Regularization Yields Better-Calibrated Models Table 1 present a summary of results

for a subset of the 19 network architectures. Last rows summarizes the comparison by reporting,

for each metric, how often our method outperforms the baseline across the full set of 19 models.

The inverse-rate regularizer slightly lowers Top-1 accuracy but consistently improves NLL, variance,

calibration, and Top-5 accuracy, yielding more reliable predictions overall.

Table 1. Comparison of the baseline (Base) method (SGD + L2 + data augmentation) versus our inverse-rate regularizer

added on top (Ours).

CIFAR-10
Top1-Acc (↑) Top5-Acc (↑) NLL (↓) Variance (↓) ECE (↓)
Base Ours Base Ours Base Ours Base Ours Base Ours

mobilenetv2_x0_75 0.935 0.938 0.998 0.998 0.264 0.254 1.341 1.306 0.040 0.037

repvgg_a0 0.945 0.938 0.998 0.998 0.237 0.247 1.327 1.206 0.036 0.037

resnet32 0.934 0.935 0.997 0.998 0.295 0.250 1.682 1.205 0.042 0.036

shufflenetv2_x0_5 0.904 0.891 0.996 0.997 0.335 0.329 1.395 0.940 0.048 0.033

vgg19_bn 0.941 0.934 0.997 0.997 0.332 0.315 2.187 1.878 0.049 0.049

All Models 8/19 13/19 14/19 14/19 11/19

CIFAR-100
Top1-Acc (↑) Top5-Acc (↑) NLL (↓) Variance (↓) ECE (↓)
Base Ours Base Ours Base Ours Base Ours Base Ours

mobilenetv2_x0_75 0.743 0.698 0.930 0.920 1.080 1.053 4.414 2.596 0.110 0.044

repvgg_a0 0.755 0.739 0.931 0.931 1.056 1.075 4.272 4.452 0.094 0.108

resnet32 0.696 0.699 0.910 0.920 1.330 1.106 5.851 3.448 0.140 0.077

shufflenetv2_x0_5 0.682 0.674 0.902 0.905 1.297 1.199 4.754 3.254 0.118 0.054

vgg19_bn 0.743 0.697 0.901 0.891 1.780 1.400 12.966 6.664 0.194 0.142

All Models 1/19 13/19 16/19 15/19 14/19

Sensitivity of the Inverse-Rate regularizer to Hyper-parameters.The results in table 2 show that

ρ = 0.5 offers the best trade-off across metrics. It consistently outperforms the baseline in terms of

NLL and NLL variance—achieving 12–17 wins out of 19 across datasets—while also maintaining

strong Top-5 accuracy and competitive ECE.

Table 2. Aggregate win counts comparing the inverse-rate regularizer to the baseline (SGD + L2 + augmentation) across

19 architectures on CIFAR-10 (top) and CIFAR-100 (bottom). Each row corresponds to a specific setting of the

hyper-parameters ρ and λ?. “Best” denotes per-model selection based on validation NLL. For each metric, the table

reports how many times the regularized model outperformed the baseline across the 19 model architectures.

Architecture ρ λ? Top1-Acc Top5-Acc NLL Variance ECE

CIFAR-10 Best Best 8/19 13/19 14/19 14/19 11/19

0.0 Best 0/19 6/19 6/19 19/19 17/19

0.5 Best 0/19 12/19 12/19 19/19 14/19

1.0 Best 9/19 9/19 10/19 11/19 10/19

CIFAR-100 Best Best 1/19 13/19 16/19 15/19 14/19

0.0 Best 0/19 5/19 6/19 17/19 16/19

0.5 Best 1/19 12/19 17/19 15/19 13/19

1.0 Best 2/19 13/19 14/19 15/19 13/19

Conclusions, Limitations and FutureWorks

Contribution:

Introduced the inverse-rate regularizer — a practical estimator of the theoretically optimal inverse

rate function — integrated into first-order optimisation.

Improved probabilistic quality in 19 CNN architectures on CIFAR-10/100; unified and extended

existing regularisers.

Core insight: better estimators of the inverse rate function can lead to principled, near-optimal

regularization.

Limitations:

Mini-batch estimator is biased and has variance issues in small-sample regimes.

Requires tuning of two hyperparameters.

Experiments limited to log-loss image classification — transferability to other tasks is untested.

Future Directions:

Use held-out validation data to reduce selection bias in inverse rate estimation.

Analyse bias–variance trade-offs and guarantees when n is limited.

Explore application to regression, structured prediction, and large-scale pre-training.
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