
PAC-Chernoff Bounds: Understanding Generalization in the
Interpolation Regime

Andrés R. Masegosa, Luis A. Ortega

ECAI, November 2025
https://arxiv.org/abs/2306.10947

1

https://arxiv.org/abs/2306.10947


Motivations

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Parameters ×106

0

1

2

3

4

T
ra

in
/T

es
t

lo
ss

Classical Regime
Variance-Bias Tradeoff

Modern Regime
Larger is Better

Interpolation Threshhold

Critical Region

Train loss

Test loss

PAC-Chernoff Bound

Generalization bounds that solely depend on the training data are provably vacuous for
overparameterized model classes; unable to explain generalization.

L(θ) ≤ L̂(D,θ) +O
(√ p

n

)
Why current machine learning techniques find overparameterized interpolators with strong
generalization performance is an open question.
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Contributions

A perfectly tight distribution-dependent PAC-Chernoff bound for interpolators, even in
over-parameterized models.

L(θ) ≤ L̂(D,θ) + Cν
( p
n

)
where ν is the data-generating distribution.

A theoretical framework that explains why some interpolators generalize well, while others
do not, based on a novel characterization of smoothness.

We explain why regularization, data augmentation, invariant architectures, and
over-parameterization, produce smoother interpolators with superior generalization.
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The Rate Function

Chernoff Theorem. For any fixed θ ∈ Θ and a > 0, it satisfies

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−nI(a) .

with
I(a) = sup

λ>0
λa− Jθ(λ) and Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
,

Cramer Theorem: For large n, the bound is tight
Proposition 3.4: When a is large, the bound is tight.

Inception Crop L2 Train Acc. Test Acc. Test NLL ℓ2-norm

Standard no no 99.99% 84.36% 0.65 304

Crop yes no 99.94% 86.89% 0.58 309

L2 no yes 100.0% 86.60% 0.49 200

L2-Crop yes yes 99.98% 88.45% 0.42 130

Random no no 100.0% 10.13% 5.52 311

Initial - - 10.00% 10.00% 2.30 593
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Figure 1: Metrics of Inception models on Cifar10 using ℓ2 regularization and/or random cropping (Crop), and
randomly sampled class labels (Random). The corresponding rate functions are shown on the right.
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PAC-Chernoff Bound

Theorem 4.1. With h.p., for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1

θ

(
1
n
ln kp

δ

)
.

with

I−1

θ
(s) = inf

λ>0

Jθ(λ) + s

λ
∀s ≥ 0 .

Where p is the number of parameters of the model class.
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Proposition 4.3. The bound is perfectly tight for interpolators.
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Smoother Interpolators Generalize Better

Smootness: A model θ ∈ Θ is β-smoother than a model θ′ ∈ Θ′ if

∀a ∈ (0, β] I(a) ≥ I′(a) .

Theorem 4.5. For any ϵ ≥ 0, with h.p., for all θ,θ′, simultaneously,

if L̂(D,θ) ≤ ϵ and θ is β-smoother than θ′, then, L(θ) ≤ L(θ′) + ϵ .

Inception Crop L2 Train Acc. Test Acc. Test NLL ℓ2-norm

Standard no no 99.99% 84.36% 0.65 304

Crop yes no 99.94% 86.89% 0.58 309

L2 no yes 100.0% 86.60% 0.49 200

L2-Crop yes yes 99.98% 88.45% 0.42 130

Random no no 100.0% 10.13% 5.52 311

Initial - - 10.00% 10.00% 2.30 593
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Figure 2: Metrics of Inception models on Cifar10 using ℓ2 regularization and/or random cropping (Crop), and
randomly sampled class labels (Random). The corresponding rate functions are shown on the right.
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Optimal Regularization

The inverse rate is an regularizer towards smoother models.

θ×
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L̂(D,θ) + I−1

θ

(
1
n
ln kp

δ

)
︸ ︷︷ ︸

Regularizer

,

How close is θ×
ϵ from the best possible interpolator θ⋆

ϵ .

θ⋆
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L(θ) .

Very close!!

Theorem 5.1 For any ϵ > 0, with h.p. 1− δ over D ∼ νn

|L(θ⋆
ϵ )− L(θ×

ϵ )| ≤ ϵ .

The inverse rate is an optimal regularizer.
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Understanding Existing Regularizers

Many common regularization techniques are approximations to the optimal regularizer:

Distance from initialization and ℓ2-norm:

I−1
θ

(
1
n
ln kp

δ

)
≤

√
2Ma ∥θ∥2 ,

Exponential Family and Large Data Sets:

∣∣∣∣I−1

θ

(
1
n
ln kp

δ

)
−

√
2 1
n
ln kp

δ

√
θT Covν(s(y,x))θ

∣∣∣∣ ≤ ϵ ,

Input-gradient norm:

I−1
θ

(
1
n
ln kp

δ

)
≤

√
H
n

ln kp

δ

√
Eν

[∥∥∇xℓ(y,x,θ)
∥∥2
2

]
.
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Transformed Input Data

Input data in many machine learning problems undergo transformations, often due to the
measuring process, such as sensor noise or image distortions.
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Transformed Input Data

Input data in many machine learning problems undergo transformations, often due to the
measuring process, such as sensor noise or image distortions.

Transformed input-data makes the expected loss L(θ) higher and the distribution of
L̂(D,θ) with D ∼ νn less concentrated.

Loss distribution
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Figure 3: D0 ∼ ν50
0 estimated with CIFAR-10’s test set; D1 ∼ ν50

1 adds random translations of 3 pixels;
D2 ∼ ν50

2 also adds rotations up to 20◦.
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Invariant Architectures

Proposition 6.4 If a model θ ∈ Θ is invariant to transformed-inputs νt+1,

Lνt+1 (θ) = Lνt (θ) and Iνt+1

θ
(a) = Iνt

θ
(a) ∀a > 0 .
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Invariant Architectures

Proposition 6.4 If a model θ ∈ Θ is invariant to transformed-inputs νt+1,

Lνt+1 (θ) = Lνt (θ) and Iνt+1

θ
(a) = Iνt

θ
(a) ∀a > 0 .

The L̂(D,θ) of invariant architectures is more concentrated under transformed inputs.

PAC-Chernoff bounds explain why interpolating with invariant architecture leads to better
generalization performance.

Model Train Acc. Test Acc. Test NLL

Inception 100.0% 74.08% 1.00

Inception-Shuffle 100.0% 42.46% 2.45

MLP 99.99% 51.69% 3.29

MLP-Shuffle 99.99% 51.12% 3.29

Initial Inception 10.00% 10.00% 2.30

Initial MLP 10.00% 9.96% 2.30
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Over-parameterization

Modern machine learning models are highly overparametrized.

Previous works have established links between overparametrization and generalization, but
under very limited settings.

The distribution-dependent PAC-Chernoff Bound can be used to obtain bounds over the
number of parameters of interpolators:

Theorem 7.1. For any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability 1− δ over D ∼ νn,
for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then p ≥
nIθ(L

⋆ − ϵ) + ln δ

ln k
.

where L⋆ = argminθ L(θ).
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Conclusions and Limitations

Traditional bounds relying solely on training data are unable to explain generalization of
over-parameterized interpolators.

Distribution-dependent PAC-Chernoff bounds are a promising tool able to explain a wide
range of learning techniques.

Smoother interpolators generalize better.

Connected to a wide range of regularization methods.

Explain why invariant architectures and data-augmentation works under transformed
input-data.

Over-parameterization is a neccessary condition for smooth interpolation.

Limitation: Assumption of a finite model class. It can be addressed by using PAC-Bayes
Chernoff bounds (Casado et al. 2024).
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