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@ Generalization bounds that solely depend on the training data are for

overparameterized model classes; unable to explain generalization.
L(0) < L(D,0) + O(1/2)

@ Why current machine learning techniques find overparameterized interpolators with strong
generalization performance is an
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Contributions

oA for interpolators, even in
over-parameterized models.

L(6) < L(D,6) +Cy (2)

where v is the data-generating distribution.

@ A theoretical framework that explains why some interpolators generalize well, while others
do not, based on a novel

@ We explain why regularization, data augmentation, invariant architectures, and
over-parameterization, produce smoother interpolators with superior generalization.



The Rate Function

Chernoff Theorem. For any fixed 8 € ® and a > 0, it satisfies
Ppoyn (L(e) — L(D,6) > a) < enZ(@)

with
I(a) = sup Aa—Jo()) and Jo(\) =InE, [eML(GH(y,z,e»] 7
A>0

@ Cramer Theorem: For large n, the bound is tight
@ Proposition 3.4: When q is large, the bound is tight.

To(a)

Inception Crop L2  Train Acc. TestAcc. TestNLL  ¢3-norm 0-100 —o— Stondard ol
Standard  no no 99.99% 84.36% 0.65 304 0.075 —== L2
Crop yes no 99.94% 86.89% 0.58 309 —a— Crop
L2 no yes  100.0% 86.60% 0.49 200 0.050 =<+ L2Crop
L2-Crop  yes yes  99.98%  88.45% 0.42 130 - ?'““‘“‘"

0.025 nitial Model
Random no  no  100.0% 10.13% 5.52 311 J
Initial - - 10.00% 10.00% 2.30 593 0.000

0.0 0.1 0.2 0.3 0.4 0.5

Figure 1: Metrics of Inception models on Cifar10 using ¢ regularization and/or random cropping (Crop), and
randomly sampled class labels (Random). The corresponding rate functions are shown on the right.
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PAC-Chernoff Bound

Theorem 4.1. With h.p., for all 8 € ®, simultaneously,

L(6) < L(D,6) + T;! (% In ﬁ) A

(’] 5
with Ta00
+
I,' (s) = inf JoNts ooy
A>0 A
Where p is the number of parameters of the model class.
L@y -me,
L(6,) — myg,
Iy, (s)
T, (5)
T, (5)
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Proposition 4.3. The bound is for interpolators.



Smoother Interpolators Generalize Better

Smootness: A model 8 € © is B-smoother than a model 8’ € ©' if

Va € (0,8] Z(a) >T'(a).

Theorem 4.5. For any e > 0, with h.p., for all 6, 8’, simultaneously,

if L(D,8) < eand @ is B-smoother than @', then, L(0) < L(0') + €.

To(a)
- - 0.100
Inception Crop L2  Train Acc. TestAcc. TestNLL  ¢3-norm Standard
Standard  no no 99.99% 84.36% 0.65 304 0.075 —== L2
Crop yes no 99.94% 86.89% 0.58 309 #— Crop
- — 120
L2 no  yes  100.0%  86.60% 0.49 200 0.050 'R ‘1“’"

a o 9 . —— Random
L2-Crop yes  yes 99.98% 88.45% 0.42 130 005 Initial Model
Random no  no  100.0% 10.13% 5.52 311 J
Initial - . 10.00%  10.00% 2.30 593 0.000

0.0 0.1 0.2 0.3 0.4 0.5

Figure 2: Metrics of Inception models on Cifar10 using ¢ regularization and/or random cropping (Crop), and
randomly sampled class labels (Random). The corresponding rate functions are shown on the right.
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Optimal Regularization

@ The inverse rate is an towards smoother models.

60X = argmin ﬁ(D,O) +I§1 (% In %) ,

0: ﬁ(D,g) <e N— ———
Regularizer



Optimal Regularization

@ The inverse rate is an towards smoother models.
60X = argmin ﬁ(D,B)—}—Igl (%ln %) ,

0: ﬁ(D,g) <e N— ———
Regularizer

@ How close is 8 from the best possible interpolator 8.

0 = argmin L(0).
6:L(D,6)<e



Optimal Regularization

@ The inverse rate is an towards smoother models.
60X = argmin ﬁ(D,B)—}—Igl (%ln %) ,

0: ﬁ(D,g) <e N— ———
Regularizer

@ How close is 8 from the best possible interpolator 8.
0 = argmin L(0).

6:L(D,6)<e

@ Very close!!

Theorem 5.1 For any ¢ > 0, with h.p. 1 — ¢ over D ~ v

|L(67) — LOX)| < e.

The inverse rate is an
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Understanding Existing Regularizers

Many common regularization techniques are to the optimal regularizer:

Distance from initialization and ¢2-norm:

— P
Ty (A m k) < VaMa ||6)2,

Exponential Family and Large Data Sets:

'151 (Lma) - er ln%\/BTCov,,(s(y,m))G‘ <e,

Input-gradient norm:

7 (m %) < W [ |92 0]
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Transformed Input Data

@ Input data in many machine learning problems undergo transformations, often due to the
measuring process, such as sensor noise or image distortions.
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Transformed Input Data

° in many machine learning problems undergo transformations, often due to the
measuring process, such as sensor noise or image distortions.

@ Transformed input-data makes the expected loss L(6) and the distribution of

L(D,6) with D ~ v"

Loss distribution Rate MLP Rate Inception
0.05 0.50
MLP L(D, 6) }—D]—<~ MLP v, Inception vy
MLP L(D,.8) }—Dj—» 0.04 MLP »; 040 Inception v
=4S MLP 1, Inception v
MLP £(Ds.6) ’—D]—" 0.03 0.30
Inception L(Dy, ) }—m—% 0.02 0.20
Inception L(D;, 6) }—m—kw 0.01 010
Inception L(Dy, 6) }—m—+“~

0 2 4 6 8 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

Figure 3: Dy ~ v3° estimated with CIFAR-10's test set; D1 ~ v adds random translations of 3 pixels;
Dy ~ v5° also adds rotations up to 20°.
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Invariant Architectures

A Typical Convolutional Neural Network (CNN

Convolution Pooling Convolution Pooling
Ry -
» -
: -_,.,.I?: z -4
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maps Featured maps maps Featured maps  layer
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+“——»
Fully connected layer
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distribution

Proposition 6.4 If a model 6 € @ is invariant to transformed-inputs v 1,

L¥+1(0) = L*(9) and Zp*'(a) =Ty (a) Va>0.




Invariant Architectures

Proposition 6.4 If a model 6 € © is invariant to transformed-inputs v; 41,

L"+1(0) = L"*(9) and Iy (a) =Ty (a) VYa>0.

@ The L(D, 6) of invariant architectures is under transformed inputs.
@ PAC-Chernoff bounds explain why interpolating with invariant architecture leads to better
generalization performance.

To(a
0.05 ola)
—<4— Inception —4A— MLP
Model Train Acc.  TestAcc.  Test NLL 0.04 == Inception-Shuffle —v— MLP-Shuffle
Inception 100.0% 74.08% 1.00 == Initial Inception Initial MLP /
Inception-Shuffle  100.0% 42.46% 2.45 0.03
MLP 99.99% 51.69% 3.29
MLP-Shuffle 99.99% 51.12% 3.29 0.02
Initial Inception 10.00% 10.00% 2.30
Initial MLP 10.00% 9.96% 2.30 0.01
-
00075001 02 03 04 05



Over-parameterization

@ Modern machine learning models are highly overparametrized.

@ Previous works have established links between overparametrization and generalization, but
under very limited settings.

@ The distribution-dependent PAC-Chernoff Bound can be used to obtain bounds over the
number of parameters of

Theorem 7.1. For any ¢ € (0, L*) and any ¢ € (0, 1), with high probability 1 — § over D ~ v™,
for all @ € ©, simultaneously,
A To(L* — Inéd
if L(D,0)<c then p> %.
n

where L* = arg ming L(0).



Conclusions and Limitations

@ Traditional bounds relying solely on training data are to explain generalization of
over-parameterized interpolators.

@ Distribution-dependent are a promising tool able to explain a wide
range of learning techniques.

° generalize better.

@ Connected to a

@ Explain why works under transformed
input-data.
@ Over-parameterization is a for smooth interpolation.

@ Limitation: Assumption of a finite model class. It can be addressed by using PAC-Bayes
Chernoff bounds (Casado et al. 2024).
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