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Motivations
• Why current machine learning techniques find overparameterized interpolators with strong generalization

performance is an open question.

• Generalization bounds that solely depend on the training data are provably vacuous for overparameterized
model classes; unable to explain generalization.

• Explaining the generalization of overparametrized interpolators require new tools.

Contributions
• A perfectly tight distribution-dependent PAC-Chernoff bound for interpolators, even in

over-parameterized models.

• A theoretical framework that explains why some interpolators generalize well, while others do not, based on
a novel characterization of smoothness.

• We explain why regularization, data augmentation, invariant architectures, and over-parameterization, produce
smoother interpolators with superior generalization.

The Rate Function
Chernoff Theorem. For any fixed θ ∈ Θ and a > 0, it satisfies

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−nI(a) .

with
I(a) = sup

λ>0
λa− Jθ(λ) and Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
,

0.0 0.1 0.2 0.3 0.4 0.5

0.000

0.025

0.050

0.075

0.100
Iθ(a)

Standard

L2

Crop

L2-Crop

Random

Initial Model

Figure 1: Rate Function of Inception on Cifar10.
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Figure 2: L̂(D,θ) with D ∼ ν50

PAC-Chernoff Bound
Theorem 4.1. With h.p., for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln

kp

δ

)
.

with
I−1

θ (s) = inf
λ>0

Jθ(λ) + s

λ
∀s ≥ 0 .

Where p is the number of parameters of the model class.

Tightness
Proposition. With h.p., for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln

kp

δ

)
≤ L(θ) + L̂(D,θ) .

The bound is perfectly tight for interpolators.

Smoother Interpolators Generalize Better
Smootness: A model θ ∈ Θ is β-smoother than a model θ′ ∈ Θ′ if

∀a ∈ (0, β] I(a) ≥ I ′(a) .

Theorem 4.5. For any ϵ ≥ 0, with h.p., for all θ,θ′, simultaneously,

if L̂(D,θ) ≤ ϵ and θ is β-smoother than θ′, then, L(θ) ≤ L(θ′) + ϵ .

0 I−1
θ (1

n ln kp

δ ) β

0

1
n ln kp

δ

Theorem 4.6 Critical region

Iθ(β)

Iθ(a)

Iθ′(a)

(0, 1
n ln kp

δ ) ∃β > 0 s.t. θ is β-smoother than θ′~w�
Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ

′))

Optimal Regularization
The inverse rate is an optimal regularizer.

Theorem 5.1 For any ϵ > 0, with h.p. 1 − δ over
D ∼ νn

|L(θ⋆
ϵ )− L(θ×

ϵ )| ≤ ϵ .

Where the two models are interpolators defined as:

θ×
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L̂(D,θ) + I−1
θ

(
1
n ln

kp

δ

)
︸ ︷︷ ︸

Regularizer

,

and

θ⋆
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L(θ) .

Understanding Existing Regularizers
Many common regularization techniques are approxi-
mations to the optimal regularizer:

Distance from initialization and ℓ2-norm:

I−1
θ

(1
n ln

kp

δ

)
≤

√
2Ma ∥θ − θ0∥2 ,

Exponential Family and Large Data Sets:∣∣∣∣I−1
θ

(
1
n ln

kp

δ

)
−

√
21n ln

kp

δ

√
θTCovν(s(y,x))θ

∣∣∣∣ ≤ ϵ ,

Input-gradient norm:

I−1
θ

(1
n ln

kp

δ

)
≤

√
H
n ln kp

δ

√
Eν

[∥∥∇xℓ(y,x,θ)
∥∥2
2

]
.

Transformed Input Data
• Input data in many machine learning problems undergo

transformations, often due to the measuring process, such as
sensor noise or image distortions.

• Transformed input-data makes the expected loss L(θ) higher
and the distribution of L̂(D,θ) with D ∼ νn less concentrated.

Loss distribution
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Figure 3: D0 ∼ ν500 estimated with CIFAR-10’s test set; D1 ∼ ν501 adds
random translations of 3 pixels; D2 ∼ ν502 also adds rotations up to 20◦.

Invariant Architectures
Proposition 6.4 If a model θ ∈ Θ is invariant to transformed-inputs
νt+1,

Lνt+1(θ) = Lνt(θ) and Iνt+1θ (a) = Iνtθ (a) ∀a > 0 .

• The L̂(D,θ) of invariant architectures is more concentrated
under transformed inputs.

• PAC-Chernoff bounds explain why interpolating with invariant
architecture leads to better generalization performance.

Model Train Acc. Test Acc. Test NLL
Inception 100.0% 74.08% 1.00

Inception-Shuffle 100.0% 42.46% 2.45

MLP 99.99% 51.69% 3.29

MLP-Shuffle 99.99% 51.12% 3.29

Initial Inception 10.00% 10.00% 2.30

Initial MLP 10.00% 9.96% 2.30
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Over-parameterization
The distribution-dependent PAC-Chernoff Bound can be used to obtain bounds over
the number of parameters of interpolators:

Theorem 7.1. For any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability 1 − δ

over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then p ≥ nIθ(L
⋆ − ϵ) + ln δ

ln k
.

This result can be extended to create bounds over Lipschitz constants:

if L̂(D,θ) ≤ ϵ then Lip(θ) ≥
√

nd

2c(p ln k − ln δ)
(L⋆ − ϵ) ,

and over parameter norms:

if L̂(D,θ) ≤ ϵ then ∥θ − θ0∥2 ≥
√

n

8M(p ln k − ln δ)
(L⋆ − ϵ) .

Conclusions and Limitations

• Traditional bounds relying solely on training data are unable to explain generalization of
over-parameterized interpolators.

• Distribution-dependent PAC-Chernoff bounds are a promising tool able to explain a wide
range of learning techniques.

• Smoother interpolators generalize better.

• Connected to a wide range of regularization methods.

• Explain why invariant architectures and data-augmentation works under transformed
input-data.

• Over-parameterization is a neccessary condition for smooth interpolation.

• Limitation: Assumption of a finite model class. It can be addressed by using PAC-Bayes
Chernoff bounds (Casado et al. 2024).
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