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Motivations The Rate Function

e Why current machine learning techniques find overparameterized interpolators with strong generalization Chernoff Theorem. For any fixed @ € ® and a > 0, it satisfies
performance is an open question. Prn (L(B) B [A/(D,H) > a) < o—nZ(a)

e Generalization bounds that solely depend on the training data are provably vacuous for overparameterized with

model classes; unable to explain generalization. T(a) = sup Aa— Jg(A) and Jp(\) = InE, {BA(L(H)—E(y,w,H))] |

A>0
e Explaining the generalization of overparametrized interpolators require new tools.
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e A perfectly tight distribution-dependent PAC-Chernoff bound for interpolators, even in Crop // //

_ L2-Crop
over-parameterized models. Random

Initial Model

e A theoretical framework that explains why some interpolators generalize well, while others do not, based on

a novel characterization of smoothness.
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e We explain why regularization, data augmentation, invariant architectures, and over-parameterization, produce . . . : .
P y T8 & P P Figure 1. Rate Function of Inception on Cifarl0. Figure 2: L(D, @) with D ~ 1,50
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smoother interpolators with superior generalization.

PAC-Chernoff Bound Smoother Interpolators Generalize Better Optimal Regularization

Theorem 4.1. With h.p., for all @ € ®, simultaneously, Smootness: A model 8 € © is 3-smoother than a model 8’ ¢ @' if The inverse rate is an optimal regularizer.

. (1 kP /
L(6) < L(D,0) + 1y (ﬁln 5) ' va € (0,8 I{a) 21a). Theorem 5.1 For any ¢ > 0, with h.p. 1 — 0 over
with D~ "

_ .. JgA) +s
Ly : (s) = )I\I;fo 0! )? Vs > 0. Theorem 4.5. For any € > 0, with h.p., for all 8,0’ simultaneously, [L(07) — L(6)] <.

Where p is the number of parameters of the model class. if L(D,0) < cand 0 is B-smoother than 8’ then, L(0) < L(0') +¢.

Where the two models are interpolators defined as:

Tightness 0 = arg min [A/(D, 0) —I—Ial (% In %p) :
- / 368 > 0 s.t. 0 is S-smoother than 6’ 0:L(D.0)<e ~ g

TV .
Regularizer

Proposition. With h.p., for all 8 € ©, simultaneously,

L(0) < L(D,0) + I, (4 m’) < L(6) + L(D.6). " s ﬂ |
VV(K(y7 £x, 9)) < VV(K(y7 £, 0 )) arg min L(H) .

The bound is perfectly tight for interpolators. | Ly 0:L(D,0)<e

Understanding Existing Regularizers Transformed Input Data Invariant Architectures

Many common regularization techniques are approxi- e |Input data in many machine learning problems undergo Proposition 6.4 If a model 8 € O is invariant to transformed-inputs
mations to the optimal regularizer: transformations, often due to the measuring process, such as Vit

sensor noise or image distortions. LVt+1<9> _ LVt(g) and Igtﬂ(a) _ IVt(a> Va > 0.

Distance from initialization and />-norm: 0

e Transformed input-data makes the expected loss L(@) higher )

B D ‘ L . .
Ly 1(% In ]%) < V2Ma [|0 — 6lj2, and the distribution of L(D,0) with D ~ v" less concentrated. ® The L(D,0) of mv.arlant architectures is more concentrated
under transformed inputs.

e PAC-Chernoff bounds explain why interpolating with invariant

Exponential Family and Large Data Sets: Loss distribution Rate MLP Rate Inception _ rps
O e wipa //// O g poion architecture leads to better generalization performance.
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Initial Inception

Hq EP 2 _ _ : N 0.01 M
—1In 7\/Ey |:Hv$€(y7 Z, ‘9)”2] : random translations of 3 pixels; Doy ~ VSO also adds rotations up to 20°. Initial MLP_ 1000%  996% 230 11 . , ,
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Over-parameterization Conclusions and Limitations

The distribution-dependent PAC-Chernoff Bound can be used to obtain bounds over

: Traditional bounds relying solely on training data are unable to explain generalization of
the number of parameters of interpolators:

over-parameterized interpolators.

Theorem 7.1. For any € € (0, L*) and any § € (0, 1), with high probability 1 — 4 Distribution-dependent PAC-Chernoff bounds are a promising tool able to explain a wide
over D ~ V", for all @ € ©, simultaneously, range of learning techniques.

: To(L* — €)+1n§
f L(D.0)<c then p> L0 1;”“ |
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Smoother interpolators generalize better.

Connected to a wide range of regularization methods.

This result can be extended to create bounds over Lipschitz constants: _ ) ) ) )
Explain why invariant architectures and data-augmentation works under transformed

N

nd :
f L(D,0)<e then Lip(6)> L — input-data.
f L(D,O) < ¢ then Lip( )_\/QC(plnk—ln5)( ).

Over-parameterization is a neccessary condition for smooth interpolation.
and over parameter norms:

AN

_ n . Limitation: Assumption of a finite model class. It can be addressed by using PAC-Bayes
it L(D,8) < ¢ then || — 8|22 \/SM(plnk —1nd) (L™ —€). Chernoff bounds (Casado et al. 2024).
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