

PAC-Chernoff Bounds: Understanding Generalization in the Interpolation Regime

Luis A. Ortega Andrés R. Masegosa

Motivations

- Why current machine learning techniques find overparameterized interpolators with strong generalization performance is an open question.
- Generalization bounds that solely depend on the training data are provably vacuous for overparameterized model classes; unable to explain generalization.
- Explaining the generalization of overparametrized interpolators require new tools.

Contributions

- A perfectly tight distribution-dependent PAC-Chernoff bound for interpolators, even in over-parameterized models.
- A theoretical framework that explains why some interpolators generalize well, while others do not, based on a novel characterization of smoothness.
- We explain why regularization, data augmentation, invariant architectures, and over-parameterization, produce smoother interpolators with superior generalization.

The Rate Function

Chernoff Theorem. For any fixed $\theta \in \Theta$ and a > 0, it satisfies

$$\mathbb{P}_{D \sim \nu^n} \Big(L(\boldsymbol{\theta}) - \hat{L}(D, \boldsymbol{\theta}) \ge a \Big) \le e^{-n\mathcal{I}(a)}.$$

with

$$\mathcal{I}(a) = \sup_{\lambda > 0} \ \lambda a - J_{\pmb{\theta}}(\lambda) \quad \text{ and } \quad J_{\pmb{\theta}}(\lambda) = \ln \mathbb{E}_{\nu} \Big[e^{\lambda(L(\pmb{\theta}) - \ell(\pmb{y}, \pmb{x}, \pmb{\theta}))} \Big] \,,$$

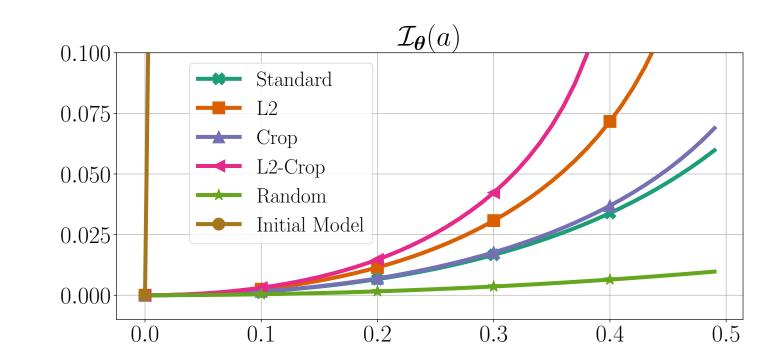
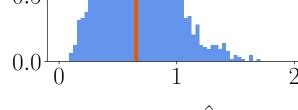
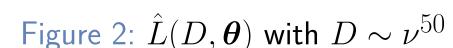


Figure 1: Rate Function of Inception on Cifar10.





PAC-Chernoff Bound

Theorem 4.1. With h.p., for all $\theta \in \Theta$, simultaneously,

$$L(\boldsymbol{\theta}) \leq \hat{L}(D, \boldsymbol{\theta}) + \mathcal{I}_{\boldsymbol{\theta}}^{-1} \left(\frac{1}{n} \ln \frac{k^p}{\delta}\right).$$

with

$$\mathcal{I}_{\boldsymbol{\theta}}^{-1}(s) = \inf_{\lambda > 0} \frac{J_{\boldsymbol{\theta}}(\lambda) + s}{\lambda} \quad \forall s \ge 0.$$

Where p is the number of **parameters** of the model class.

Tightness

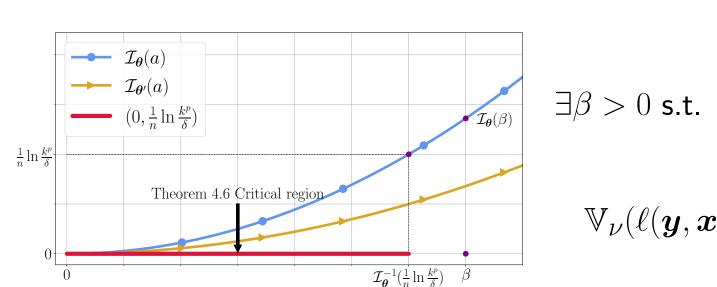
Proposition. With h.p., for all $\theta \in \Theta$, simultaneously, $L(\boldsymbol{\theta}) \leq \hat{L}(D, \boldsymbol{\theta}) + \mathcal{I}_{\boldsymbol{\theta}}^{-1} \left(\frac{1}{n} \ln \frac{k^p}{\delta} \right) \leq L(\boldsymbol{\theta}) + \hat{L}(D, \boldsymbol{\theta}).$

The bound is **perfectly tight** for interpolators.

Smoother Interpolators Generalize Better

Smootness: A model $\theta \in \Theta$ is β -smoother than a model $\theta' \in \Theta'$ if $\forall a \in (0, \beta] \quad \mathcal{I}(a) \ge \mathcal{I}'(a)$.

Theorem 4.5. For any $\epsilon \geq 0$, with h.p., for all θ, θ' , simultaneously, if $\hat{L}(D, \boldsymbol{\theta}) \leq \epsilon$ and $\boldsymbol{\theta}$ is β -smoother than $\boldsymbol{\theta'}$, then, $L(\boldsymbol{\theta}) \leq L(\boldsymbol{\theta'}) + \epsilon$.



 $\exists \beta > 0$ s.t. $\boldsymbol{\theta}$ is β -smoother than $\boldsymbol{\theta'}$

Optimal Regularization

The inverse rate is an optimal regularizer.

Theorem 5.1 For any $\epsilon > 0$, with h.p. $1 - \delta$ over $D \sim \nu^n$

$$|L(\boldsymbol{\theta}_{\epsilon}^{\star}) - L(\boldsymbol{\theta}_{\epsilon}^{\times})| \leq \epsilon.$$

Where the two models are **interpolators** defined as:

$$\boldsymbol{\theta}_{\epsilon}^{\times} = \underset{\boldsymbol{\theta}: \hat{L}(D, \boldsymbol{\theta}) \leq \epsilon}{\arg\min} \quad \hat{L}(D, \boldsymbol{\theta}) + \underbrace{\mathcal{I}_{\boldsymbol{\theta}}^{-1} \left(\frac{1}{n} \ln \frac{k^p}{\delta}\right)}_{\text{Regularizer}},$$

and

$$\boldsymbol{\theta}_{\epsilon}^{\star} = \underset{\hat{\boldsymbol{\theta}}: \hat{L}(D, \boldsymbol{\theta}) \leq \epsilon}{\operatorname{arg \, min}} L(\boldsymbol{\theta}).$$

Understanding Existing Regularizers

Many common regularization techniques are approximations to the optimal regularizer:

Distance from initialization and ℓ_2 -norm:

$$\mathcal{I}_{\boldsymbol{\theta}}^{-1}(\frac{1}{n}\ln\frac{k^p}{\delta}) \leq \sqrt{2Ma} \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_2,$$

Exponential Family and Large Data Sets:

$$\left|\mathcal{I}_{\boldsymbol{\theta}}^{-1}\left(\frac{1}{n}\ln\frac{k^p}{\delta}\right) - \sqrt{2\frac{1}{n}\ln\frac{k^p}{\delta}}\sqrt{\boldsymbol{\theta}^T\mathsf{Cov}_{\nu}(s(\boldsymbol{y},\boldsymbol{x}))\boldsymbol{\theta}}\right| \leq \epsilon\,,$$

Input-gradient norm:

$$\mathcal{I}_{\boldsymbol{\theta}}^{-1}\left(\frac{1}{n}\ln\frac{k^p}{\delta}\right) \leq \sqrt{\frac{H}{n}\ln\frac{k^p}{\delta}}\sqrt{\mathbb{E}_{\nu}\left[\left\|\nabla_x\ell(\boldsymbol{y},\boldsymbol{x},\boldsymbol{\theta})\right\|_2^2\right]}$$
.

Transformed Input Data

- Input data in many machine learning problems undergo transformations, often due to the measuring process, such as sensor noise or image distortions.
- Transformed input-data makes the expected loss $L(\theta)$ higher and the distribution of $\hat{L}(D, \theta)$ with $D \sim \nu^n$ less concentrated.

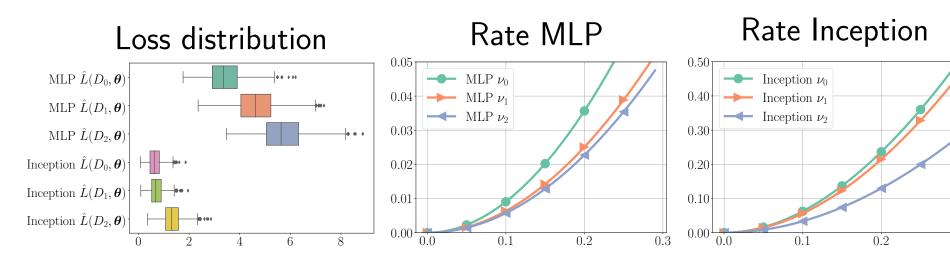


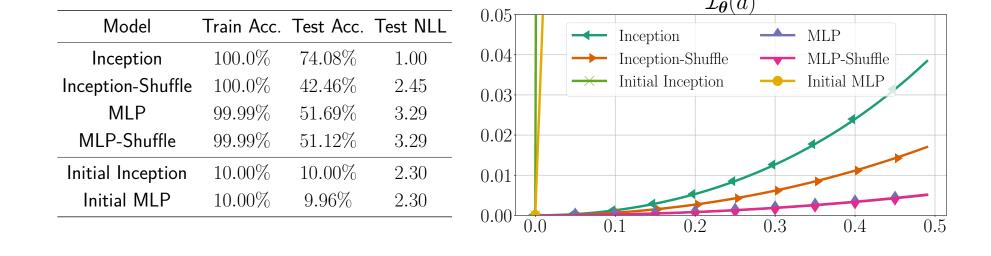
Figure 3: $D_0 \sim \nu_0^{50}$ estimated with CIFAR-10's test set; $D_1 \sim \nu_1^{50}$ adds random translations of 3 pixels; $D_2 \sim \nu_2^{50}$ also adds rotations up to 20° .

Invariant Architectures

Proposition 6.4 If a model $heta\in\Theta$ is invariant to transformed-inputs ν_{t+1} ,

$$L^{\nu_{t+1}}(\boldsymbol{\theta}) = L^{\nu_t}(\boldsymbol{\theta}) \quad \text{and} \quad \mathcal{I}^{\nu_{t+1}}_{\boldsymbol{\theta}}(a) = \mathcal{I}^{\nu_t}_{\boldsymbol{\theta}}(a) \quad \forall a > 0 \, .$$

- The $\hat{L}(D, \theta)$ of invariant architectures is more concentrated under transformed inputs.
- PAC-Chernoff bounds explain why interpolating with invariant architecture leads to better generalization performance.



Over-parameterization

The distribution-dependent PAC-Chernoff Bound can be used to obtain bounds over the number of parameters of interpolators:

Theorem 7.1. For any $\epsilon \in (0, L^*)$ and any $\delta \in (0, 1)$, with high probability $1 - \delta$ over $D \sim \nu^n$, for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, simultaneously,

$$\text{if} \quad \hat{L}(D, \pmb{\theta}) \leq \epsilon \quad \text{then} \quad p \geq \frac{n\mathcal{I}_{\pmb{\theta}}(L^{\bigstar} - \epsilon) + \ln \delta}{\ln k} \,.$$

This result can be extended to create bounds over **Lipschitz constants**:

$$\text{if} \quad \hat{L}(D, \pmb{\theta}) \leq \epsilon \quad \text{then} \quad Lip(\pmb{\theta}) \geq \sqrt{\frac{nd}{2c(p \ln k - \ln \delta)}} (L^{\bigstar} - \epsilon) \,,$$

and over parameter norms:

$$\text{if} \quad \hat{L}(D, \pmb{\theta}) \leq \epsilon \quad \text{then} \quad \|\pmb{\theta} - \pmb{\theta}_0\|_2 \geq \sqrt{\frac{n}{8M(p \ln k - \ln \delta)}} (L^\star - \epsilon) \,.$$

Conclusions and Limitations

- Traditional bounds relying solely on training data are unable to explain generalization of over-parameterized interpolators.
- Distribution-dependent PAC-Chernoff bounds are a promising tool able to explain a wide range of learning techniques.
- Smoother interpolators generalize better.
- Connected to a wide range of regularization methods.
- Explain why invariant architectures and data-augmentation works under transformed input-data.
- Over-parameterization is a neccessary condition for smooth interpolation.
- Limitation: Assumption of a finite model class. It can be addressed by using PAC-Bayes Chernoff bounds (Casado et al. 2024).

Preprint

