Introduction to Probabilistic Machine Learning Summer School on Methods for Statistical Evaluation of Al

Andrés Masegosa

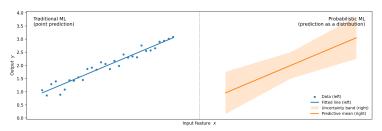
[Material made by Thomas D. Nielsen and Helge Langseth]

MseAl - 2025

Introduction

From Predictions to Uncertainty-Aware Predictions

- Traditional ML: learns a function $f(x) \approx y$
 - Outputs: single prediction
 - Ignores uncertainty
- Probabilistic ML:
 - Models distributions, not just points
 - Explicitly represents uncertainty
 - Principles: Models + Inference



Prediction as a distribution (uncertainty included).

Why Uncertainty Matters in Practice

In the real world, predictions are not enough. We need to know how confident they are.

- Healthcare: Misdiagnosis risk uncertainty flags when to call a human expert.
- Autonomous driving: Preventing Fatal Errors uncertainty flags when driving under conditions not included in the train data.
- General ML systems: Uncertainty enables robustness, outlier detection, and better decision-making.

Probabilistic ML = Predictions + Confidence → Safer, more trustworthy Al.

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta})$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(y | x, \theta)$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Now we can calculate the posterior over θ given training data \mathcal{D} ,

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})},$$

 \dots and, e.g., the predictive distribution of a new observation \mathbf{x}' :

$$p(\mathbf{y}' \mid \mathbf{x}' \mathcal{D}) = \int_{\boldsymbol{\theta}} p(\mathbf{y}' \mid \mathbf{x}', \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{\theta}.$$

MseAl - 2025 Introduction

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(y | x, \theta)$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Now we can calculate the posterior over θ given training data \mathcal{D} ,

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})},$$

... and, e.g., the predictive distribution of a new observation x':

$$p(\mathbf{y}' \mid \mathbf{x}' \mathcal{D}) = \int_{\boldsymbol{\theta}} p(\mathbf{y}' \mid \mathbf{x}', \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{\theta}.$$

Being Bayesian means maintaining a distribution over θ .

Using a point-estimate for θ is not **Bayesian** ML.

MseAl - 2025 Introduction

Example: Linear regression

A Bayesian linear regression with univariate explanatory variables:

$$\textbf{Likelihood} - p(\mathcal{D} \mid \boldsymbol{\theta}) \textbf{:} \quad p(y_i \mid x_i, \mathbf{w}, \sigma_y^2) = \mathcal{N} \left(w_0 + w_1 \cdot x_i, \sigma_y^2 \right)$$

Note! The observation noise, σ_y^2 , is known, so the parameter-set is simply $\theta = \{\mathbf{w}\}$.

Prior –
$$p(\theta)$$
: $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \sigma_w^2)$

Bayesian Linear regression – Full model:

$$p(\mathcal{D}, \boldsymbol{\theta}) = p\left(\left\{y_i\right\}_{i=1}^n, \mathbf{w} \mid \left\{\mathbf{x}_i\right\}_{i=1}^n, \sigma_y^2, \sigma_w^2\right) = p(\mathbf{w} \mid \sigma_w^2) \prod_{i=1}^n p(y_i \mid \mathbf{w}, \mathbf{x}_i, \sigma_y^2)$$

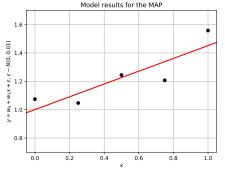
MseAl - 2025 Introduction

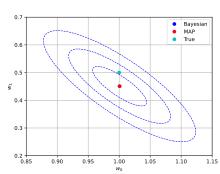
Example: Linear regression – MAP vs (fully) Bayesian

Bayes linear regression with some fake data:

- We have generated N=5 examples from $y_i=1.0+0.5\cdot x_i+\epsilon_i,\,\epsilon_i\sim\mathcal{N}\left(0,0.1^2\right)$.
- Weights unknown a priori, so here we use the vague priors $w_j \sim \mathcal{N}\left(0, 10^2\right)$.

Results for the MAP and the fully Bayesian model:





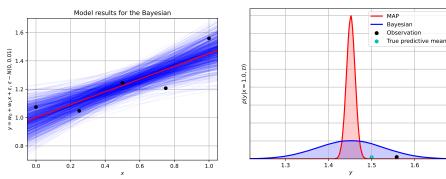
- MAP: Reasonable point estimate; No model uncertainty;
- Bayes: Model uncertainty around same MAP estimate;

Example: Linear regression – MAP vs (fully) Bayesian

Bayes linear regression with some fake data:

- We have generated N=5 examples from $y_i=1.0+0.5\cdot x_i+\epsilon_i,\,\epsilon_i\sim\mathcal{N}\left(0,0.1^2\right)$.
- Weights unknown a priori, so here we use the vague priors $w_j \sim \mathcal{N}\left(0, 10^2\right)$.

Results for the MAP and the fully Bayesian model:



- MAP: Reasonable point estimate; No model uncertainty; Predictive uncertainty degenerated to observation noise: poor fit wrt. true value and observation.
- Bayes: Model uncertainty around same MAP estimate; Captures model uncertainty well: Predictive distribution reasonable.

Bayesian inference – Summary

Bayesian inference is in principle easy using Bayes' rule:

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})} = \frac{p(\mathcal{D}, \boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) d\boldsymbol{\theta}}$$

Note! This can only be solved analytically for **some simple models** (e.g., linear regression), but typically not for the really interesting models.

We need to approximate $p(\theta \mid \mathcal{D})$

What we want:

- Computationally efficient;
- Well-founded approach;
- Easy integration with other frameworks.

What we don't want:

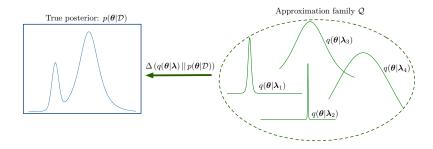
- Non scalable solutions;
- Widely applicable.

FUNDAMENTAL assumption:

It will always be *computationally efficient* to evaluate $p(\mathcal{D}, \boldsymbol{\theta})$ at any given point $\{\mathcal{D}, \boldsymbol{\theta}\}$, e.g., using the simple factorization $p(\mathcal{D}, \boldsymbol{\theta}) = p(\boldsymbol{\theta}) \cdot p(\mathcal{D} \mid \boldsymbol{\theta}) = p(\boldsymbol{\theta}) \prod_i p(\mathbf{x}_i \mid \boldsymbol{\theta})$.

Approximate inference through optimization – Main idea

Variational Inference: Approximate the true posterior distribution $p(\theta \mid \mathcal{D})$ with a **variational distribution** from a tractable family of distributions \mathcal{Q} . The family is indexed by the parameters λ .



Approximate inference through optimization

- General goal: Somehow approximate $p(\theta \mid D)$ with a $q(\theta \mid D)$.
 - **Note!** We use $q(\theta)$ as a short-hand for $q(\theta \mid \mathcal{D})$.

Formalization of approximate inference through optimization:

Given a family of tractable distributions $\mathcal Q$ and a distance measure between distributions $\Delta,$ choose

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \Delta(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})).$$

Decisions to be made:

- lacktriangle How to define $\Delta(\cdot||\cdot)$ so that we end up with a high-quality solution?
 - ullet How to work with $\Deltaig(q(m{ heta})\,||\,p(m{ heta}\,|\,\mathcal{D})ig)$ when we don't know what $p(m{ heta}\,|\,\mathcal{D})$ is?
- ${\cal Q}$ How to define a family of distributions ${\cal Q}$ that is both flexible enough to generate good approximations and restrictive enough to support efficient calculations?

Distance measure

Standard choice when working with probability distributions

The Kullback-Leibler divergence is the standard distance measure:

$$\mathrm{KL}\left(f||g\right) = \int_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \, \log\left(\frac{f(\boldsymbol{\theta})}{g(\boldsymbol{\theta})}\right) \, \mathrm{d}\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta} \sim f} \left[\log\left(\frac{f(\boldsymbol{\theta})}{g(\boldsymbol{\theta})}\right)\right].$$

Notice that while $\mathrm{KL}\left(f||g\right)$ obeys the positivity criterion, it satisfies neither symmetry nor the triangle inequality. It is thus **not a proper distance measure**.

Two alternative KL definitions: KL(q||p) or KL(p||q)?

Information-projection

- Minimizes $\mathrm{KL}\left(q||p\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim q}[\log p(\boldsymbol{\theta}\,|\,\mathcal{D})] \mathcal{H}_q.$
- Preference given to q that has:
 - High q-probability allocated to p-probable regions.
 - Small q in any region where p is small.

"
$$p(\boldsymbol{\theta} \mid \mathcal{D}) \approx 0 \implies q(\boldsymbol{\theta}) \approx 0$$
".

1 High entropy (\sim variance)

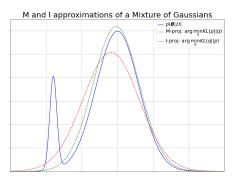
Moment-projection

- Minimizes $\mathrm{KL}\left(p||q\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim p}[\log q(\boldsymbol{\theta})] \mathcal{H}_p.$
- Preference given to *q* that has:
 - High q-probability allocated to p-probable regions.
 - **2** $q(\theta) > 0$ in any region where p is non-negligible. " $p(\theta \mid \mathcal{D}) > 0 \implies q(\theta) > 0$ "
 - No explicit focus of entropy

Cheat-sheet:

- KL-divergence: $\mathrm{KL}\left(f||g\right) = \mathbb{E}_f\left[\log\left(\frac{f(\pmb{\theta})}{g(\pmb{\theta})}\right)\right] = -\mathbb{E}_f\left[\log\left(g(\pmb{\theta})\right)\right] \mathcal{H}_f.$
- Entropy: $\mathcal{H}_f = -\int_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \log (f(\boldsymbol{\theta})) d\boldsymbol{\theta} = -\mathbb{E}_f [\log (f(\boldsymbol{\theta}))].$
- Intuition: Cheat a bit (measure-zero, limit-zero-rates, etc.) and think "If $g(\theta_0) \approx 0$, then $-\mathbb{E}_{\theta \sim f}[\log g(\theta)]$ becomes 'huge' unless $f(\theta_0) \approx 0$ " because $\lim_{x \to 0^+} \log(x)$ diverges, while $\lim_{x \to 0^+} x \cdot \log(x) = 0$.

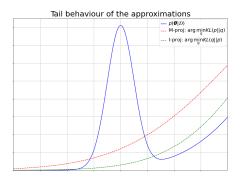
Moment and Information projection – main difference



Example: Approximating a Mix-of-Gaussians by a single Gaussian

- Similar mean values, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.

Moment and Information projection – main difference



Example: Approximating a Mix-of-Gaussians by a single Gaussian

- Similar mean values, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.
- M-projection is zero-avoiding, while I-projection is zero-forcing.

Variational Bayes setup

VB uses information projections:

Variational Bayes relies on **information projections**, i.e., approximates $p(\theta \mid D)$ by

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} \mid \mathcal{D})\right)$$

Positives:

- Clever interpretation when used for Bayesian machine learning.
 - We will end up with an objective that lower-bounds the marginal log likelihood, $\log p(\mathcal{D})$.
- Very efficient when combined with cleverly chosen Q.

Negatives:

- May result in zero-forcing behaviour.
 - Typical choice of Q can make this issue even more prominent.

Notice how we can rearrange the KL divergence as follows:

$$\operatorname{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right) = \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}\mid\mathcal{D})}\right]$$

Notice how we can rearrange the KL divergence as follows:

$$| KL(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})) | = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta} | \mathcal{D}) \cdot p(\mathcal{D})} \right]$$

Notice how we can rearrange the KL divergence as follows:

$$\frac{\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right)}{\mathrm{E}\left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}\mid\mathcal{D})}\right]} = \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log \frac{q(\boldsymbol{\theta})\cdot p(\mathcal{D})}{p(\boldsymbol{\theta}\mid\mathcal{D})\cdot p(\mathcal{D})}\right]$$

$$= \log p(\mathcal{D}) - -\mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})}\right]$$

Notice how we can rearrange the KL divergence as follows:

$$KL (q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta}|\mathcal{D}) \cdot p(\mathcal{D})} \right] \\
= \log p(\mathcal{D}) - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})} \right] = \frac{\log p(\mathcal{D})}{p(\boldsymbol{\theta},\mathcal{D})} - \mathcal{L}(q)$$

 $\text{Evidence Lower Bound (ELBO):} \ \ \mathcal{L}\left(q\right) = -\mathbb{E}_{\theta \sim q}\left[\log \frac{q(\theta)}{p(\theta,\mathcal{D})}\right] = \mathbb{E}_{\theta \sim q}\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right] \ .$

Notice how we can rearrange the KL divergence as follows:

$$KL (q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta}|\mathcal{D}) \cdot p(\mathcal{D})} \right] \\
= \log p(\mathcal{D}) - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})} \right] = \log p(\mathcal{D}) - \mathcal{L}(q)$$

$$\text{Evidence Lower Bound (ELBO):} \ \ \mathcal{L}\left(q\right) = -\mathbb{E}_{\pmb{\theta} \sim q}\left[\log \frac{q(\pmb{\theta})}{p(\pmb{\theta},\mathcal{D})}\right] = \mathbb{E}_{\pmb{\theta} \sim q}\left[\log \frac{p(\pmb{\theta},\mathcal{D})}{q(\pmb{\theta})}\right] \ .$$

VB focuses on ELBO:

$$\log p(\mathcal{D}) = \mathcal{L}(q) + \mathrm{KL}(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D}))$$

Since $\log p(\mathcal{D})$ is constant wrt. the distribution q it follows:

- We can minimize $\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right)$ by maximizing $\mathcal{L}\left(q\right)$
- This is **computationally simpler** because it uses $p(\theta, \mathcal{D})$ and not $p(\theta \mid \mathcal{D})$.
- $\mathcal{L}(q)$ is a lower bound of $\log p(\mathcal{D})$ because $\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right) \geq 0$.

$$\rightsquigarrow$$
 Look for $\hat{q}(\boldsymbol{\theta}) = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q)$.

Notice how we can rearrange the KL divergence as follows:

$$KL (q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta}|\mathcal{D}) \cdot p(\mathcal{D})} \right] \\
= \log p(\mathcal{D}) - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})} \right] = \log p(\mathcal{D}) - \mathcal{L}(q)$$

Evidence Lower Bound (ELBO): $\mathcal{L}\left(q\right) = -\mathbb{E}_{\theta \sim q}\left[\log \frac{q(\theta)}{p(\theta,\mathcal{D})}\right] = \mathbb{E}_{\theta \sim q}\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$.

Summary:

- We started out looking for $\arg\min_{q\in\mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right)$.
- Didn't know how to calculate $\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right)$ because $p(\boldsymbol{\theta}\,|\,\mathcal{D})$ is unknown.
- ullet Still, we can find the optimal approximation by maximizing $\mathcal{L}\left(q
 ight)$:

$$\arg \max_{q \in \mathcal{Q}} \mathcal{L}(q) = \arg \min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})\right).$$

• It all makes sense: We aim to maximize $\mathcal{L}(q)$, which is a lower-bound of $\log p(\mathcal{D})$.

Variational Bayes w/ Mean Field

The mean field assumption

What we have ...

We now have the first building-block of the approximation:

$$\Delta(q || p) = \text{KL}(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} | \mathcal{D})),$$

and avoided the issue with $p(\theta \mid \mathcal{D})$ by focusing on $\mathcal{L}(q)$.

We still need the set Q:

Very often you will see the **mean field assumption**, which states that $\mathcal Q$ consists of distributions that **factorize** according to the equation

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda}) = \prod_{i} q_i(\theta_i|\lambda_i).$$

This may seem like a very restricted set, but it often works well anyway . . .

Wrapping it all up: The VB algorithm under MF

Setup:

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D}) = p(\theta) \cdot p(\mathcal{D} \mid \theta)$.
- ullet We use the ELBO as our objective, and assume $q(oldsymbol{ heta})$ factorizes.
- We posit a *variational family* of distributions $q_i(\cdot | \lambda_i)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_i .
- We then aim to solve the following continuous maximization problem:

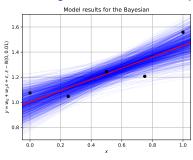
$$\arg\max_{\boldsymbol{\lambda}}\mathcal{L}(\boldsymbol{\lambda}) = \arg\min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} \mid \mathcal{D})\right).$$

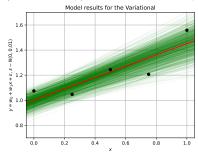
(Stochastic) Gradient ascent algorithm for maximizing a function L (λ):

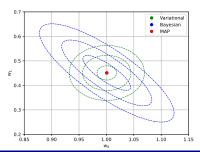
- Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1, ...:

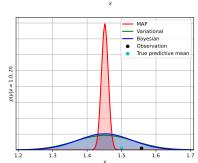
$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho_t \cdot \mathcal{L}\left(\boldsymbol{\lambda}^{(t-1)}\right)$$

Bayes linear regression with likelihood $y_i \mid \{w_0, w_1, x_i, \sigma_y^2\} = \mathcal{N}(w_0 + w_1 x_i, \sigma_y^2)$.









Probabilistic programming: Pyro

Pyro's main features (www.pyro.ai):

- Initially developed by UBER (the car riding company).
- Community of contributors and a dedicated team at Broad Institute (US).
- Rely on Pytorch (Deep Learning Framework).
- Enable GPU accelaration and distributed learning.

Pyro

Pyro (pyro.ai) is a Python library for probabilistic machine learning integrated with PyTorch.

- **Modeling:** Directed graphical models
 - Neural networks (via nn.Module)
 - ...
- Inference: Variational inference including BBVI, SVI
 - Monte Carlo including Importance sampling and Hamiltonian Monte Carlo
 - ...
- Criticism:

 Point-based evaluations
 - Posterior predictive checks
 - ...

https://github.com/PGM-Lab/2025-MSE-AI