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What is Probabilistic Machine Learning?

From Predictions to Uncertainty-Aware Predictions

@ Traditional ML: learns a function f(z) =~ y
e Outputs: single prediction
e Ignores uncertainty

@ Probabilistic ML:
o Models distributions, not just points
o Explicitly represents uncertainty
e Principles: Models + Inference

Traditional ML Probabilistic ML
35 (point prediction) (prediction as a distribution)

o Data (left)
e (left)

Input feature x

Prediction as a distribution (uncertainty included).
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Why Uncertainty Matters in Practice

In the real world, predictions are not enough. We need to know
how confident they are.

@ Healthcare: Misdiagnosis risk - uncertainty flags when to call a human expert.

@ Autonomous driving: Preventing Fatal Errors - uncertainty flags when driving
under conditions not included in the train data.

@ General ML systems: Uncertainty enables robustness, outlier detection, and
better decision-making.

Probabilistic ML = Predictions + Confidence — Safer, more trustworthy Al.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(y | x, 6).
@ Prior: p(0) reflects our a priori belief about the parameters 6.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(y | x, 6).
@ Prior: p(0) reflects our a priori belief about the parameters 6.

Now we can calculate the posterior over 6 given training data D,

p(6)p(D|6)

p(0|D) = WD)

... and, e.g., the predictive distribution of a new observation x’:

p(y' |X'D) = / Dy’ %, 0)p(8| D) db.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(y | x, 6).
@ Prior: p(0) reflects our a priori belief about the parameters 6.

Now we can calculate the posterior over 6 given training data D,

_ p(®)p(D]6)

p(0|D) WD)

... and, e.g., the predictive distribution of a new observation x’:

p(y' |X'D) = / Dy’ %, 0)p(8| D) db.

Being Bayesian means maintaining a distribution over 6.
Using a point-estimate for 0 is not Bayesian ML.
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Example: Linear regression

A Bayesian linear regression with univariate explanatory variables:
Likelihood — p(D |0):  p(y; | zi, w,05) = N (wo + w1 - 24, 07)

Note! The observation noise, aj, is known, so the parameter-set is simply 8 = {w}.

Prior — p(6): p(w) =N (0,02)

Bayesian Linear regression — Full model:

p(D|0)
p(0)
——

p(D,6) =p ({yi}iey W {xiYizy 0y, 00) = p(w o) [ [ plyi | w,xi, 07)

.
1 3
i
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Example: Linear regression — MAP vs (fully) Bayesian

Bayes linear regression with some fake data:
@ We have generated N = 5 examples from y; = 1.0+ 0.5 - z; + €, &; ~ N (0,0.17).
@ Weights unknown a priori, so here we use the vague priors w; ~ N (0,10%).

Results for the MAP and the fully Bayesian model:

Model results for the MAP

0.7
16 e Bayesian
: ° oo e o MAP
{ s ® True

0.6

0.5

Wo + wix + €, € ~N(0,0.01)
wy

y=

0.8

0.0 0.2 0.4 0.6 0.8 1.0 0.85 0.90 0.95 1.00 1.05 110 115
x

@ MAP: Reasonable point estimate; No model uncertainty;

(]

Bayes: Model uncertainty around same MAP estimate;
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Example: Linear regression — MAP vs (fully) Bayesian

Bayes linear regression with some fake data:
@ We have generated N = 5 examples from y; = 1.0+ 0.5 - z; + €, € ~ N (0,0.1%).
@ Weights unknown a priori, so here we use the vague priors w; ~ A (0, 10?).

Results for the MAP and the fully Bayesian model:

Model results for the Bayesian

— MAP

- Bayesian

® Observation

® True predictive mean

Wo +wix + €, € ~N(0,0.01)
plylx=1.0,D)

y=

0.0 0.2 0.4 0.6 0.8 1.0 13 1.4 15 1.6
x y

@ MAP: Reasonable point estimate; No model uncertainty; Predictive uncertainty
degenerated to observation noise: poor fit wrt. true value and observation.

@ Bayes: Model uncertainty around same MAP estimate; Captures model
uncertainty well; Predictive distribution reasonable.
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Bayesian inference — Summary

Bayesian inference is in principle easy using Bayes’ rule:
p(8)p(D|0) »(D,0)
0|D)= =
POIPY="0D) = T,00)p(D10)d0

Note! This can only be solved analytically for some simple models (e.g., linear
regression), but typically not for the really interesting models.

We need to approximate p(0 | D)

What we want:

@ Computationally efficient; What we don’t want:
@ Well-founded approach; @ Non scalable solutions;
@ Easy integration with other © Widely applicable.
frameworks.
FUNDAMENTAL assumption:

It will always be computationally efficient to evaluate p(D, 0) at any given point {D, 6},
e.g., using the simple factorization p(D, ) = p(0) - p(D | 0) = p(0) [ ], p(x: | 9).
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Variational Bayes: Approximate inference by optimization
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Approximate inference through optimization — Main idea

Variational Inference: Approximate the true posterior distribution p(@ | D) with a

variational distribution from a tractable family of distributions Q. The family is
indexed by the parameters A.

Approximation family Q
True posterior: p(6|D)
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Approximate inference through optimization

@ General goal: Somehow approximate p(6 | D) with a ¢(8 | D).
o Note! We use ¢(0) as a short-hand for ¢(6 | D).

Formalization of approximate inference through optimization:

Given a family of tractable distributions Q and a distance measure between
distributions A, choose

4(6) = argmin A(¢(6) | (6| D).

Decisions to be made:

@ How to define A(:||-) so that we end up with a high-quality solution?
o How to work with A(q(8) || p(6 | D)) when we don’t know what p(6 | D) is?

@ How to define a family of distributions Q that is both flexible enough to generate
good approximations and restrictive enough to support efficient calculations?
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Distance measure

Standard choice when working with probability distributions

The Kullback-Leibler divergence is the standard distance measure:

1= e (1) =1 (53]

Notice that while KL (f||g) obeys the positivity criterion, it satisfies neither symmetry
nor the triangle inequality. It is thus not a proper distance measure.
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Two alternative KL definitions: KL (¢||p) or KL (p||q)?

Information-projection

@ Minimizes KL (q||p) =
—Eonq[log p(6 | D)] — H,.
@ Preference given to ¢ that has:
@ High g-probability allocated
to p-probable regions.
@ Small g in any region where p
is small.
“p(@|D)~0 = ¢q(0) =0
© High entropy (~ variance)

Moment-projection
@ Minimizes KL (p||q) =
—Eon~pllogq(0)] — H
@ Preference given to ¢ that has:
@ High g-probability allocated
to p-probable regions.
@ ¢(0) > 0in any region
where p is non-negligible.

“p(0|D) >0 = () >0

© No explicit focus of entropy

Cheat-sheet:

e KL-divergence: KL (f||g) = E; [IOg (%)] = —Ey [log (9(0))] — H;-
].

@ Entropy: #; = — [, f(6)

log (£(0)) d6 = —E [log (f(8))

@ Intuition: Cheat a bit (measure-zero, limit-zero-rates, etc.) and think
“If g(60) =~ 0, then — Ee~.¢[log g(0)] becomes ‘huge’ unless f(6y) ~ 0”
because lim,_,+ log(x) diverges, while lim,_,,+ z - log(z) = 0.
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Moment and Information projection — main difference

M and | approximations of a Mixture of Gaussians
— p(e|p)
~-- M-proj: arg minkL(p||q)

- kproj: argminkL(llp)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.
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Moment and Information projection — main difference

Tail behaviour of the approximations
— p(e|p)
~-- M-proj: arg minkL(p||q)

- kproj: argminkL(ql[p)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.

@ M-projection is zero-avoiding, while I-projection is zero-forcing.
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Variational Bayes setup
VB uses information projections:

Variational Bayes relies on information projections, i.e., approximates p(6 | D) by

4(8) = arg min KL (¢(8)||p(6 [ D))

@ Positives:
o Clever interpretation when used for Bayesian machine learning.
@ We will end up with an objective that lower-bounds the marginal log likelihood, log p(D).

o Very efficient when combined with cleverly chosen Q.

@ Negatives:
e May result in zero-forcing behaviour.
@ Typical choice of Q can make this issue even more prominent.
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL (¢(0)/[p(0|D)) = Eo~g [log p(%(%)}
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

a0 1 oy _40) - p(D)
p(ewﬂ = Fo~a {1 & p(6]D) -p(DJ

KL(¢(0)[p(8]|D)) = Eow, [log
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL@O)IOID) = Foy [log 00| = Bon, [1ox A0 D]
= logp(D) — —Equ [log p(qe(eé)}
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL@@)pOID) = Eovy |log 505 | = Bavo s G0
— 10g2(D) - ~Eov, |10z A0 ] — logn(D) - £(a

Evidence Lower Bound (ELBO): £ (q) = —Eg~q [log ‘1(79))] =Eony [log ”E}”’D)] :
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KEGOIOID) = Bows e s Try] =B oo 57

log (D) ~ ~Eo- |05 4] — loxp(D) - £(a)

Evidence Lower Bound (ELBO): £ (¢) = —Eon~yq [log %] =Eony [log s } .
VB focuses on ELBO:

logp(D) = L(q) + KL (q(8)||p(6|D))

Since logp(D) is constant wrt. the distribution ¢ it follows:

@ We can minimize KL (¢(0)||p(@ | D)) by maximizing L (q)
@ This is computationally simpler because it uses p(6, D) and not p(0 | D).
@ L(q) is a lower bound of log p(D) because KL (¢(8)||p(8 | D)) > 0.

~ Look for §(0) = argmaxqco L (q).
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL (¢(0)|[p(@|D)) = Eo~yg [log (9(?)@)} Eo~g {log %}
= logp(D) — —Fgry [log p(qe(ﬁl))):| = logp(D) — L(q)

Evidence Lower Bound (ELBO): £ (q) = —Eg~q [log a8 ] Eonyg [log D)] .

Summary:
@ We started out looking for arg mingco KL (¢(0)||p(0 | D)).
@ Didn’t know how to calculate KL (¢(0)||p(@ | D)) because p(8 | D) is unknown.

@ Still, we can find the optimal approximation by maximizing £ (q) :
argmax £ (¢) = argmin KL (¢(8)||p(6 | D)) -

@ It all makes sense: We aim to maximize £ (q), which is a lower-bound of log p(D).
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Variational Bayes w/ Mean Field
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The mean field assumption

We now have the first building-block of the approximation:

Algqllp) = KL (¢()|Ip(0 | D)) ,

and avoided the issue with p(@ | D) by focusing on L (g).

We still need the set O:

Very often you will see the mean field assumption, which states that Q consists of
distributions that factorize according to the equation

q(0|A) = qu'(eip\i)-

This may seem like a very restricted set, but it often works well anyway . ..
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Wrapping it all up: The VB algorithm under MF

@ We have observed D, and can calculate the full joint p(6, D) = p(0) - p(D | 8).
@ We use the ELBO as our objective, and assume ¢(0) factorizes.

@ We posit a variational family of distributions g;(- | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

@ We then aim to solve the following continuous maximization problem:

argmax L(A) = argmin KL (¢(0)||p(0 | D)) .
A qeEQ

(Stochastic) Gradient ascent algorithm for maximizing a function L (\):

@ Initialize A(©) randomly.
Q Fort=1,...
AD L AED 4 pp ()\u—l))
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VB-MF example

“sanity

Bayes linear regression with likelihood y; | {wo, w1, i, 05} = N(wo + w1 x4, 07).

Model results for the Bayesian

ecC

wo + wix + €, € ~ N(0,0.01)

y=

07
@ \Variational
Bayesian
MAP
06
05
g
0.4
03
02
0.85 0.90 0.95 1.00 1.05 110

wo

Wo+wix +€, € ~N(0,0.01)

y=

=1.0,D)

plylx

Model results for the Variational

0.8
0.0 0.2 0.4 0.6 0.8 1.0
x
— MAP
—— Variational
— Bayesian
® Observation
® True predictive mean
12 17
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Probabilistic programming: Pyro
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Pyro’s main features (www.pyro.ai):

@ Initially developed by UBER (the car riding company).
@ Community of contributors and a dedicated team at Broad Institute (US).
@ Rely on Pytorch (Deep Learning Framework).

@ Enable GPU accelaration and distributed learning.
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www.pyro.ai

Pyro

Pyro (pyro.ai) is a Python library for probabilistic machine learning integrated with
PyTorch.

Modeling: @ Directed graphical models
@ Neural networks (via nn.Module)
° ...
Inference: @ Variational inference — including BBVI, SVI
@ Monte Carlo — including Importance sampling and Hamiltonian
Monte Carlo
Criticism: Point-based evaluations

Posterior predictive checks

https://github.com/PGM-Lab/2025-MSE-AT
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