Bavesian Models of Data Streams

with Hierarchical Power Priors

Andres R. Masegosa(1), Thomas D. Mielsen(2), Helge Langseth(3), Dario Ramos-Lopez(1), Antonio Salmeron(1), Anders L. Hadsen(2,4)

A Java Toolbox for Scalable Probabilistic Machine Learning

The problem

· Variational Inference

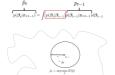
- · Learning from Data Streams

- Continuous Model Undating

- Bayesian posterior conditioned to non-finite data set - Presence of Concept Drift (i.e. non i.i.d data).

- Conjugate Exponential Family (CEF)

Our proposal


· Out-of-the-box temporal extension

- Global parameters β_t evolve over time
- Hierarchical prior modeling concept drift
- Closed-form Variational inference

- p(β_i|β_{i-1}, ρ_i) defined by a general implicit transition model
- Non-parametric form
 - No need of expert knowledge modeling.
- ρ_t ~ TrucantedExponential(γ), Ω(ρ_t) = [0, 1].
 - a, close to 1 → No Drift at time t (i.e. β_{t-1} ≈ β_t)
 - ρ_t close to 0 → Drift at time t (i.e. β_{t-1} ≈ β_t). - p(p_t|x_{1:t}) tracks concept drift

Implicit Transition Models

$$\hat{\lambda}_t = (1 - \rho)\lambda_n + \rho\lambda_{t-1}$$

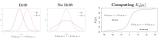
· Closed-form solution for the Exponential Family

- λ natural parameter vector
- $-\rho \in [0,1]$ is defined by the user
- $-\sigma = 0$ equals $\kappa = \infty$.

Variational Inference

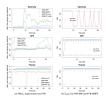
· Variational Inference in plain LVMs

- $-\ (\lambda^{\mathbf{x}},\phi^{\mathbf{x}}) = \arg\max_{\lambda,\phi} \mathcal{L}(\lambda,\phi|\mathbf{x},\alpha)$ $a(\beta, z|x, \alpha)$
 - Closed-form gradients for CEF models


· Variational Inference in temporal LVMs $q(\beta_t, z_t, \rho_t | \lambda_t, \phi_t, \omega_t)$ $-\ (\boldsymbol{\lambda}_{t}^{*}, \boldsymbol{\phi}_{t}^{*}, \boldsymbol{\omega}_{t}^{*}) = \arg\max_{\boldsymbol{\lambda}_{t}, \boldsymbol{\phi}_{t, \mathrm{obs}}} \mathcal{L}_{HPP}(\boldsymbol{\lambda}_{t}, \boldsymbol{\phi}_{t}, \boldsymbol{\omega}_{t} | \mathbf{x}, \boldsymbol{\lambda}_{t-1})$

- No closed-form gradients

Variational Inference with Hierarchical Porwer Priors


(1) Milversity of Alberto [25], (2) University of Aalberg [34], (3) Horsegian University of Science and Technology [30], (4) Hugin Expert A/5 [34]

- —
 \(\text{\tin}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\t
- A double-lower bound $\mathcal{L}_{HPP} > \hat{\mathcal{L}}_{HPP}$
 —
 \(\text{\tin}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\t

- . If only part of the data drifts: · Closed-form gradient
 - Multiple Hierarchical Power Priors (M.HPP) $-\frac{\partial L_{HFP}}{\partial t} = KL(\alpha_1, \alpha_2) - KL(\alpha_1, \alpha_{-1}) + \gamma - \omega_1.$ Place independent on for each parameter of the model - A measure of concept drift - Closed-form Variational inference

Experimental Evaluation

· Summary of the evaluation

- M-HPP is the most robust approach - Adaptive forgetting mechanisms are usually needed.
- Concept drift usually affects only a part of the model