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Introduction A novel second order oracle bound Empirical evaluation
Weighted majority vote is a fundamental technique in machine learning
for combining predictions of multiple classifiers. L(MV,) < P( E [1(h(X)#Y)] > 0.5) e Test error of optimized majority vote over uniformly weighted
. . H/_/ %/_/ - .
Our Contributions: Expected loss of p-weighted mass baseline for first order [FO| and new second order [TND| bound
_ _ o p-weighted majority vote of errors
e Second order PAC-Bayesian bound for the weighted majority vote. (the lower the better)
e Minimization of the bound does not deteriorate the test error. Second-order Markov’s inequality P(X > ¢) < gz D {XZ]: _ Bmary . Multiclass,
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Standard first order analysis —  4E.[Ep[L(h(X) £YAR(X) £Y) = % | T %
Expected Tandem Loss: L(h,h’) = 3/ | ]( -
Observation: If p-weighted majority vote makes an error, then at least _ 4 E.[L(h, h') =~
a p-weighted half of the classifiers make an error. Thus, we have that s s | ) T
Key Points: - m ﬂ T
L(MV,) < P( E,[1(h(X)#Y)] > 0.5) e Tandem loss counts an error if both h and h' err on a sample. % ra Hﬂz Hﬂl I L ELELELRE
Y - “weight B . ~ 0.8
p_WeIiEgﬁteecdteg a!j)jrsitg)/fv e P We()'%gtrfgr:"ass e Tandem loss is small when the two hypotheses h and h’ both U000, 515,y Gl let 05,5 G,
| | | | have low expected errors and their errors are anticorrelated. < ‘«?}i%%@é% “V@f’o/f%@xo@“@%&%f
First order bound: Applying Markov's inequality (P(X > ¢) < !E[X]) 1Y, Py “ ey
: 2
< 2 Ep[E,[1(h(X) £ Y)] e Second order oracle bound: 5,
A /
— 2 E,[L(h)] L(MV,) <4 Ep[L(h,h')] e Optimized weights p* generated by the first order [FO| and the
Expected loss of p-weighted new second order [TN D] bound.
randomized classifier
PENDIGITS
Issues with the first-order bound: Second order PAC-Bayesian bound 0.08
e |gnores correlation of errors among ensemble members.
e Minimization degrades the test error (Lorenzen et al., 2019). By applying PAC-Bayes-A (Thiemann et al., 2017) to E:[L(h, h’)] 0.03
For 7t independent of S, with probability at least 1 — 0 for all p and 0.03
Prior second order analysis A€ (0,2)

L(MV,) <4 ﬂpz[L(h, h')]
The C-bounds (Lacasse et al., 2007, Germain et al., 2015, Laviolette ——

et al., 2017): Based on Chebyshev-Cantelli inequality Emwss 5 Summary
4 2 [L(h ', S)] 2KL(p[|m) + In 2™
2 X2 — E [X]? - 1—A/2  nA(1—2A/2) |
P(X>¢) < DX R [X] & 2 mm e Minimizing first order bounds deteriorates the test error. Existing
e second order bounds are looser and can not be optimized.

Issues with prior second order bounds: Key Points: P

o T [Xz_ and E [X] in the denominator make estimation hard. e [akes correlation of errors into account. e Novel second order oracle and PAC-Bayesian bounds for the

o Empi_rica ly weaker than the first order bound. e \We can easily find the p distribution minimizing the bound. weighted majority vote based on second order Markov's inequality.

e Impossible to optimize except in very restrictive cases.  The minimization of the bound does not degrade the test error e Minimization of the bound does not deteriorate the test error.
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