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Introduction
Weighted majority vote is a fundamental technique in machine learning
for combining predictions of multiple classifiers.
Our Contributions:
• Second order PAC-Bayesian bound for the weighted majority vote.
• Minimization of the bound does not deteriorate the test error.

Standard first order analysis
Observation: If ρ-weighted majority vote makes an error, then at least
a ρ-weighted half of the classifiers make an error. Thus, we have that

L(MVρ)︸ ︷︷ ︸
Expected loss of

ρ-weighted majority vote

≤ P( Eρ[1(h(X) 6= Y)]︸ ︷︷ ︸
ρ-weighted mass

of errors

≥ 0.5 )

First order bound: Applying Markov’s inequality (P(X ≥ ε) ≤ 1
ε
E [X])

≤ 2 ED[Eρ[1(h(X) 6= Y)]]
= 2 Eρ[L(h)]︸ ︷︷ ︸

Expected loss of ρ-weighted
randomized classifier

Issues with the first-order bound:
• Ignores correlation of errors among ensemble members.
• Minimization degrades the test error (Lorenzen et al., 2019).

Prior second order analysis
The C-bounds (Lacasse et al., 2007, Germain et al., 2015, Laviolette
et al., 2017): Based on Chebyshev-Cantelli inequality

P(X ≥ ε) ≤ E
X2

 − E [X]2

E [X2] − E [X] + ε2

Issues with prior second order bounds:
• E

X2
 and E [X] in the denominator make estimation hard.

• Empirically weaker than the first order bound.
• Impossible to optimize except in very restrictive cases.

A novel second order oracle bound

L(MVρ)︸ ︷︷ ︸
Expected loss of

ρ-weighted majority vote

≤ P( Eρ[1(h(X) 6= Y)]︸ ︷︷ ︸
ρ-weighted mass

of errors

≥ 0.5 )

Second-order Markov’s inequality P(X ≥ ε) ≤ 1
ε2
E

X2
:

≤ 4 ED[Eρ[1(h(X) 6= Y)]2]
= 4 Eρ2[ED[1(h(X) 6= Y ∧ h ′(X) 6= Y)]︸ ︷︷ ︸

Expected Tandem Loss: L(h, h ′)
]

= 4 Eρ2[L(h, h ′)]

Key Points:
• Tandem loss counts an error if both h and h ′ err on a sample.
• Tandem loss is small when the two hypotheses h and h ′ both
have low expected errors and their errors are anticorrelated.
• Second order oracle bound:

L(MVρ) ≤ 4 Eρ2[L(h, h ′)]

Second order PAC-Bayesian bound
By applying PAC-Bayes-λ (Thiemann et al., 2017) to Eρ2[L(h, h ′)]
For π independent of S, with probability at least 1 − δ for all ρ and
λ ∈ (0, 2)

L(MVρ) ≤ 4 Eρ2[L(h, h ′)]

≤ 4


Empirical Tandem loss︷ ︸︸ ︷
Eρ2[L̂(h, h ′, S)]
1− λ/2

+
2KL(ρ‖π) + ln 2

√
n
δ

nλ(1− λ/2)︸ ︷︷ ︸
PAC-Bayes upper bound on Eρ2[L(h, h ′)]



Key Points:
• Takes correlation of errors into account.
• We can easily find the ρ distribution minimizing the bound.
• The minimization of the bound does not degrade the test error

Empirical evaluation

• Test error of optimized majority vote over uniformly weighted
baseline for first order [FO] and new second order [TND] bound
(the lower the better)

A
dult

C
od-R

N
A

P
hishing

SV
M
G
uide1

Splice

w
1a

0.8

1

2

3

4

5
6
7

L̂
(M

V
ρ
∗ ,
S
te
st
)/
L̂
(M

V
u
,S

te
st
)

Binary

C
onnect-4

Fashion-M
N
IST

Letter

M
N
IST

P
endigits

P
rotein

SatIm
age

Sensorless

U
SP
S

Multiclass

ρ∗FO ρ∗TND

• Optimized weights ρ? generated by the first order [FO] and the
new second order [TND] bound.

Summary

• Minimizing first order bounds deteriorates the test error. Existing
second order bounds are looser and can not be optimized.
• Novel second order oracle and PAC-Bayesian bounds for the
weighted majority vote based on second order Markov’s inequality.
• Minimization of the bound does not deteriorate the test error.
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