Second Order PAC-Bayesian Bounds for the Weighted Majority Vote

Andrés R. Masegosa, University of Almería

Introduction

Weighted majority vote is a fundamental technique in machine learning for combining predictions of multiple classifiers.

Our Contributions:

- Second order PAC-Bayesian bound for the weighted majority vote.
- Minimization of the bound does not deteriorate the test error.

Standard first order analysis

Observation: If p-weighted majority vote makes an error, then at least a p-weighted half of the classifiers make an error. Thus, we have that

 $\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]$ $L(MV_{\rho})$ ρ-weighted mass Expected loss of ρ-weighted majority vote

First order bound: Applying Markov's inequality $(\mathbb{P}(X \ge \varepsilon) \le \frac{1}{\varepsilon}\mathbb{E}[X])$

 $2 \mathbb{E}_{D}[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]]$ $2 \mathbb{E}_{\rho}[L(h)]$ Expected loss of ρ -weighted randomized classifier

of errors

Issues with the first-order bound:

- Ignores correlation of errors among ensemble members.
- Minimization degrades the test error (Lorenzen et al., 2019).

Prior second order analysis

The C-bounds (Lacasse et al., 2007, Germain et al., 2015, Laviolette et al., 2017): Based on Chebyshev-Cantelli inequality

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[X^2] - \mathbb{E}[X]^2}{\mathbb{E}[X^2] - \mathbb{E}[X] + \varepsilon^2}$$

Issues with prior second order bounds:

- $\mathbb{E}[X^2]$ and $\mathbb{E}[X]$ in the denominator make estimation hard.
- Empirically weaker than the first order bound.
- Impossible to optimize except in very restrictive cases.

A novel second order oracle bound

 \geq 0.5)

 $L(MV_{\rho})$ \leq Expected loss of ρ-weighted majority vote

ρ-weighted mass of errors

Second-order Markov's inequality $\mathbb{P}(X \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbb{E}[X^2]$:

 $4 \mathbb{E}_{D}[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}]$ \leq ____

 $4 \mathbb{E}_{o^2}[L(h, h')]$

Key Points:

- **Tandem loss** counts an error if both h and h' err on a sample.
- Tandem loss is small when the two hypotheses h and h' both have low expected errors and their errors are anticorrelated.
- Second order oracle bound:

 $L(MV_{\rho}) \leq 4 \mathbb{E}_{\rho^2}[L(h, h')]$

Second order PAC-Bayesian bound

By applying PAC-Bayes- λ (Thiemann et al., 2017) to $\mathbb{E}_{o^2}[L(h, h')]$ For π independent of S, with probability at least $1 - \delta$ for all ρ and $\lambda \in (0,2)$

$$L(MV_{\rho}) \leq 4 \mathbb{E}_{\rho^2}[L(h, h')]$$

Empirical **Tandem loss** $\mathbb{E}_{0^2}[\widehat{L}(h, h', S)]$ ≤ 4 $-\lambda/2$

Key Points:

- Takes correlation of errors into account.
- We can easily find the ρ distribution minimizing the bound. • The minimization of the bound does not degrade the test error

Neural Information Processing Systems, NeurIPS, 2020

Stephan S. Lorenzen, Christian Igel, Yevgeny Seldin University of Copenhagen

Empirical evaluation

- $\mathbb{P}(\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)] \geq 0.5)$
- $4 \mathbb{E}_{\rho^2}[\mathbb{E}_{D}[\mathbb{1}(h(X) \neq Y \land h'(X) \neq Y)]]$ Expected **Tandem Loss**: L(h, h')

- $2 \operatorname{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}$ $n\lambda(1-\lambda/2)$ PAC-Bayes upper bound on $\mathbb{E}_{0^2}[L(h, h')]$

(the lower the better)

• Optimized weights ρ^* generated by the first order [FO] and the new second order [TND] bound.

Summary

- Minimizing first order bounds deteriorates the test error. Existing second order bounds are looser and can not be optimized.
- Novel second order oracle and PAC-Bayesian bounds for the weighted majority vote based on second order Markov's inequality.
- Minimization of the bound does not deteriorate the test error.

• Test error of optimized majority vote over uniformly weighted baseline for first order [FO] and new second order [TND] bound