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Weighted Majority Vote

I Fundamental technique for combining predictions of multiple
classifiers

I Used in Bagging, Boosting, etc.

I Wins most ML competitions

Ensemble’s Key Power

I Cancellation of errors effect
If the errors are independent, they average out

Our contributions
I Second order PAC-Bayesian generalization bound for the

weighted majority vote

I Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error
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Standard analysis
If ρ-weighted majority vote makes an error, then at least a
ρ-weighted half of the classifiers make an error

L(MVρ)︸ ︷︷ ︸
Expected loss of

ρ-weighted majority vote

≤ P( Eρ[1(h(X ) 6= Y )]︸ ︷︷ ︸
ρ-weighted mass

of errors

≥ 0.5 )

First order bound: use Markov’s inequality (P(X ≥ ε) ≤ 1
εE [X ])

≤ 2 ED [Eρ[1(h(X ) 6= Y )]]

= 2 Eρ[L(h)]︸ ︷︷ ︸
Expected loss of ρ-weighted

randomized classifier

Issues
I Ignores correlation of errors (the key power)

I Minimization of the corresponding PAC-Bayes bound degrades
the test error (Lorenzen et al., 2019)
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Prior second order analysis

The C-bounds (Lacasse et al., 2007, Germain et al., 2015,
Laviolette et al., 2017)

Based on Chebyshev-Cantelli inequality

P(X ≥ ε) ≤ E
[
X 2
]
− E [X ]2

E [X 2]− E [X ] + ε2

Issues
I E

[
X 2
]

and E [X ] in the denominator make empirical
estimation hard

I Empirically weaker than the first order bound (Lorenzen et al.,
2019)

I Impossible to optimize the weighting except in very restrictive
cases
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Our contribution: a novel second-order oracle bound

L(MVρ)︸ ︷︷ ︸
Expected loss of

ρ-weighted majority vote

≤ P( Eρ[1(h(X ) 6= Y )]︸ ︷︷ ︸
ρ-weighted mass

of errors

≥ 0.5 )

Second-order Markov’s inequality P(X ≥ ε) ≤ 1
ε2E [X 2]:

≤ 4 ED [Eρ[1(h(X ) 6= Y )]2]

= 4 Eρ2 [ED [1
(
h(X ) 6= Y ∧ h′(X ) 6= Y

)
]︸ ︷︷ ︸

Expected Tandem Loss: L(h,h′)

]

= 4 Eρ2 [L(h, h′)]

I Tandem loss counts an error if both h and h′ err on a sample

I Second order oracle bound: L(MVρ) ≤ 4Eρ2 [L(h, h′)]
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A specialized oracle bound for binary classification

In binary classification tandem loss L(h, h′) satisfies

Eρ2 [L(h, h′)] = Eρ[L(h)]︸ ︷︷ ︸
Expected loss of ρ-weighted

randomized classifier

− 1

2
Eρ2 [ED [1

(
h(X ) 6= h′(X )

)
]︸ ︷︷ ︸

Expected Disagreement
D(h,h′)

].

Specialized oracle bound for binary classification

L(MVρ)︸ ︷︷ ︸
Expected loss of

ρ-weighted majority vote

≤ 4 Eρ[L(h)]︸ ︷︷ ︸
Expected loss of ρ-weighted

randomized classifier

− 2 Eρ2 [D(h, h′)]︸ ︷︷ ︸
Expected Disagreement of
ρ-weighted rand. classifier

D(h, h′) only depends on unlabeled data!!
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From oracle to empirical bounds

PAC-Bayes-λ (Thiemann et al., 2017):

For π independent of S , with probability at least 1− δ for all ρ and
λ ∈ (0, 2)

and γ > 0

Eρ [L(h)] ≤ Eρ[L̂(h,S)]

1− λ
2

+
KL(ρ‖π) + ln(2

√
n/δ)

λ
(
1− λ

2

)
n︸ ︷︷ ︸

PAC-Bayesian upper bound

Eρ [L(h)] ≥
(

1− γ

2

)
Eρ[L̂(h,S)]− KL(ρ‖π) + ln(2

√
n/δ)

γn︸ ︷︷ ︸
PAC-Bayesian lower bound
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Second-order PAC-Bayesian bound

L(MVρ) ≤ 4

Expected
Tandem Loss︷ ︸︸ ︷
Eρ2 [L(h, h′)]

≤ 4

( Empirical
Tandem loss︷ ︸︸ ︷

Eρ2 [L̂(h, h′,S)]

1− λ/2
+

2 KL(ρ‖π) + ln 2
√
n
δ

nλ(1− λ/2)︸ ︷︷ ︸
PAC-Bayes upper bound on Eρ2 [L(h, h′)]

)

Advantages

I Takes correlation of errors into account

I Easy to minimize and tight

I Minimization of the bound does not degrade the test error
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Second-order PAC-Bayesian bound for
binary classification

Expected loss of
majority vote︷ ︸︸ ︷
L(MVρ) ≤ 4 Eρ[L(h)] − 2

Expected Disagreement︷ ︸︸ ︷
Eρ2 [D(h, h′)]

≤ 4

(
Eρ[L̂(h,S)]

1− λ/2
+

KL(ρ‖π) + ln(4
√
n/δ)

nλ(1− λ/2)︸ ︷︷ ︸

PAC-Bayes upper bound on Eρ2 [L(h, h′)]

)

− 2

(
(1− γ/2)

Empirical
Disagreement︷ ︸︸ ︷

Eρ2 [D̂(h, h′, S ′)]−2 KL(ρ‖π) + ln(4
√
m/δ)

γm︸ ︷︷ ︸
PAC-Bayes lower bound on Eρ2 [D(h, h′)]

)

I It can exploit unlabeled data
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Empirical evaluation
I Test error of optimized majority vote over uniformly weighted

baseline for first order [FO] and new second order [TND]
bound (the lower the better)
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Empirical evaluation

I The optimized weights ρ? generated by the first order [FO]
and the new second order [TND] bound.
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Summary

State-of-the-art
I Minimization of existing first-order bound significantly

deteriorates the test error

I Existing second-order bounds are looser and can not be
optimized

Contributions
I Novel second order oracle bound for the weighted majority

vote based on second order Markov’s inequality

I Novel second order PAC-Bayesian bound for the weighted
majority vote

I Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error



Summary

State-of-the-art
I Minimization of existing first-order bound significantly

deteriorates the test error

I Existing second-order bounds are looser and can not be
optimized

Contributions
I Novel second order oracle bound for the weighted majority

vote based on second order Markov’s inequality

I Novel second order PAC-Bayesian bound for the weighted
majority vote

I Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error



Summary

State-of-the-art
I Minimization of existing first-order bound significantly

deteriorates the test error

I Existing second-order bounds are looser and can not be
optimized

Contributions
I Novel second order oracle bound for the weighted majority

vote based on second order Markov’s inequality

I Novel second order PAC-Bayesian bound for the weighted
majority vote

I Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error



Summary

State-of-the-art
I Minimization of existing first-order bound significantly

deteriorates the test error

I Existing second-order bounds are looser and can not be
optimized

Contributions
I Novel second order oracle bound for the weighted majority

vote based on second order Markov’s inequality

I Novel second order PAC-Bayesian bound for the weighted
majority vote

I Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error


