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> Used in Bagging, Boosting, etc.
> Wins most ML competitions

Ensemble’'s Key Power

» Cancellation of errors effect
If the errors are independent, they average out

Our contributions
» Second order PAC-Bayesian generalization bound for the
weighted majority vote
» Minimization of the bound guides weighting of ensemble
members and does not deteriorate the test error
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——

Expected loss of p-weighted
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Issues
» Ignores correlation of errors (the key power)

» Minimization of the corresponding PAC-Bayes bound degrades
the test error (Lorenzen et al., 2019)
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Prior second order analysis

The C-bounds (Lacasse et al., 2007, Germain et al., 2015
Laviolette et al., 2017)

Based on Chebyshev-Cantelli inequality

E[X?] -E[X]?
PX 29 < Ee—Ex] + 22

Issues

> E [X?] and E[X] in the denominator make empirical
estimation hard

» Empirically weaker than the first order bound (Lorenzen et al.,
2019)

P Impossible to optimize the weighting except in very restrictive
cases
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Expected loss of p-weighted mass
p-weighted majority vote of errors

Second-order Markov's inequality P(X > ¢) < JE[X?]:
< 4Ep[E[L(h(X) # V)P
4 Ee[Ep[L(h(X) # Y AN (X)# Y)]]
Expected Tandem Loss: L(h,h)
— AR )]

» Tandem loss counts an error if both h and h" err on a sample

> Second order oracle bound: L(MV,) < 4E [L(h, h')]
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In binary classification tandem loss L(h, i) satisfies

1
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randomized classifier D(h,h")

Specialized oracle bound for binary classification

/
LMV,) < 4EJLM]  —  2Ea[D(h )]
—— —_———— —_——
Expected loss of Expected loss of p-weighted Expected Disagreement of
p-weighted majority vote randomized classifier p-weighted rand. classifier

D(h, h’) only depends on unlabeled data!!
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From oracle to empirical bounds

PAC-Bayes-\ (Thiemann et al., 2017):

For 7 independent of S, with probability at least 1 — § for all p and
A€ (0,2)and vy >0

EL(h.S)] , KL(plm) + In(2y/n/3)
B L = = )

PAC-Bayesian upper bound

E, [L(h)] = (1= 3 ) B [L(h, )] - KL(p|Im) —;,:n(Q\/ﬁ/(S)

PAC-Bayesian lower bound
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L(MV,) <4 E2[L(h, )]

Empirical
Tandem loss

——
. (Epz[L(h, W,S)  2KL(p||m) + In 2L >
= 1— )2 (1 — \/2)

PAC-Bayes upper bound on E 2[L(h, h')]

Advantages

» Takes correlation of errors into account
» Easy to minimize and tight
» Minimization of the bound does not degrade the test error
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Empirical
Disagreement

Y n m
~2( (1= 2/2) BpB(h 5] - 2K D) )

PAC-Bayes lower bound on E >[D(h, h')]

> It can exploit unlabeled data



Empirical evaluation
» Test error of optimized majority vote over uniformly weighted
baseline for first order [FO] and new second order [TND]
bound (the lower the better)
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Empirical evaluation

» The optimized weights p* generated by the first order [FO|
and the new second order [TND] bound.
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