Second Order PAC-Bayesian Bounds for the Weighted Majority Vote

Andrés R. Masegosa ${ }^{1}$ Stephan S. Lorenzen ${ }^{2}$
Christian Igel $^{2} \quad$ Yevgeny Seldin ${ }^{2}$
${ }^{1}$ University of Almería
${ }^{2}$ University of Copenhagen

NeurIPS, December 2020

Weighted Majority Vote

- Fundamental technique for combining predictions of multiple classifiers
- Used in Bagging, Boosting, etc.
- Wins most ML competitions

Weighted Majority Vote

- Fundamental technique for combining predictions of multiple classifiers
- Used in Bagging, Boosting, etc.
- Wins most ML competitions

Ensemble's Key Power

- Cancellation of errors effect If the errors are independent, they average out

Weighted Majority Vote

- Fundamental technique for combining predictions of multiple classifiers
- Used in Bagging, Boosting, etc.
- Wins most ML competitions

Ensemble's Key Power

- Cancellation of errors effect If the errors are independent, they average out

Our contributions

- Second order PAC-Bayesian generalization bound for the weighted majority vote
- Minimization of the bound guides weighting of ensemble members and does not deteriorate the test error

Standard analysis

If ρ-weighted majority vote makes an error, then at least a ρ-weighted half of the classifiers make an error

Standard analysis

If ρ-weighted majority vote makes an error, then at least a ρ-weighted half of the classifiers make an error

Standard analysis

If ρ-weighted majority vote makes an error, then at least a ρ-weighted half of the classifiers make an error

First order bound: use Markov's inequality $\left(\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon} \mathbb{E}[X]\right)$

$$
\begin{aligned}
& \leq \quad 2 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]\right] \\
& =\quad 2 \underbrace{\mathbb{E}_{\rho}[L(h)]}_{\begin{array}{c}
\text { Expected loss of } \rho \text {-weighted } \\
\text { randomized classifier }
\end{array}}
\end{aligned}
$$

Standard analysis

If ρ-weighted majority vote makes an error, then at least a ρ-weighted half of the classifiers make an error

First order bound: use Markov's inequality $\left(\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon} \mathbb{E}[X]\right)$

$$
\begin{aligned}
& \leq \quad 2 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]\right] \\
& =\quad 2 \underbrace{\mathbb{E}_{\rho}[L(h)]}_{\begin{array}{c}
\text { Expected loss of } \rho \text {-weighted } \\
\text { randomized classifier }
\end{array}}
\end{aligned}
$$

Issues

- Ignores correlation of errors (the key power)
- Minimization of the corresponding PAC-Bayes bound degrades the test error (Lorenzen et al., 2019)

Prior second order analysis

The C-bounds (Lacasse et al., 2007, Germain et al., 2015, Laviolette et al., 2017)
Based on Chebyshev-Cantelli inequality

$$
\mathbb{P}(X \geq \varepsilon) \leq \frac{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]+\varepsilon^{2}}
$$

Prior second order analysis

The C-bounds (Lacasse et al., 2007, Germain et al., 2015, Laviolette et al., 2017)
Based on Chebyshev-Cantelli inequality

$$
\mathbb{P}(X \geq \varepsilon) \leq \frac{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]+\varepsilon^{2}}
$$

Issues

- $\mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}[X]$ in the denominator make empirical estimation hard
- Empirically weaker than the first order bound (Lorenzen et al., 2019)
- Impossible to optimize the weighting except in very restrictive cases

Our contribution: a novel second-order oracle bound

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

$$
\leq \quad 4 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}\right]
$$

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

$$
\begin{aligned}
& \leq 4 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}\right] \\
& =4 \mathbb{E}_{\rho^{2}}[\underbrace{\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq Y \wedge h^{\prime}(X) \neq Y\right)\right]}_{\text {Expected Tandem Loss: } L\left(h, h^{\prime}\right)}]
\end{aligned}
$$

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

$$
\begin{aligned}
& \leq 4 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}\right] \\
& =4 \mathbb{E}_{\rho^{2}}[\underbrace{\left.\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq Y \wedge h^{\prime}(X) \neq Y\right)\right]\right]}_{\text {Expected Tandem Loss: } L\left(h, h^{\prime}\right)} \\
& =4 \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]
\end{aligned}
$$

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

$$
\begin{aligned}
& \leq 4 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}\right] \\
& =4 \mathbb{E}_{\rho^{2}}[\underbrace{\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq Y \wedge h^{\prime}(X) \neq Y\right)\right]}_{\text {Expected Tandem Loss: } L\left(h, h^{\prime}\right)}] \\
& =4 \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]
\end{aligned}
$$

- Tandem loss counts an error if both h and h^{\prime} err on a sample

Our contribution: a novel second-order oracle bound

Second-order Markov's inequality $\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}\left[X^{2}\right]$:

$$
\begin{aligned}
& \leq 4 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]^{2}\right] \\
& =4 \mathbb{E}_{\rho^{2}}[\underbrace{\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq Y \wedge h^{\prime}(X) \neq Y\right)\right]}_{\text {Expected Tandem Loss: } L\left(h, h^{\prime}\right)}] \\
& =4 \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]
\end{aligned}
$$

- Tandem loss counts an error if both h and h^{\prime} err on a sample
- Second order oracle bound: $L\left(\mathrm{MV}_{\rho}\right) \leq 4 \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]$

A specialized oracle bound for binary classification

In binary classification tandem loss $L\left(h, h^{\prime}\right)$ satisfies

$$
\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]=\underbrace{\mathbb{E}_{\rho}[L(h)]}_{\begin{array}{c}
\text { Expected loss of } \rho \text {-weighted } \\
\text { randomized classifier }
\end{array}}-\frac{1}{2} \mathbb{E}_{\rho^{2}}[\underbrace{\left.\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq h^{\prime}(X)\right)\right]\right] .}_{\begin{array}{c}
\text { Expected Disagreement } \\
\mathbb{D}\left(h, h^{\prime}\right)
\end{array}}
$$

A specialized oracle bound for binary classification

In binary classification tandem loss $L\left(h, h^{\prime}\right)$ satisfies

$$
\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]=\underbrace{\mathbb{E}_{\rho}[L(h)]}_{\begin{array}{c}
\text { Expected loss of } \rho \text {-weighted } \\
\text { randomized classifier }
\end{array}}-\frac{1}{2} \mathbb{E}_{\rho^{2}}[\underbrace{\left.\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq h^{\prime}(X)\right)\right]\right] .}_{\begin{array}{c}
\text { Expected Disagreement } \\
\mathbb{D}\left(h, h^{\prime}\right)
\end{array}}
$$

Specialized oracle bound for binary classification

A specialized oracle bound for binary classification

In binary classification tandem loss $L\left(h, h^{\prime}\right)$ satisfies

$$
\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]=\underbrace{\mathbb{E}_{\rho}[L(h)]}_{\begin{array}{c}
\text { Expected loss of } \rho \text {-weighted } \\
\text { randomized classifier }
\end{array}}-\frac{1}{2} \mathbb{E}_{\rho^{2}}[\underbrace{\left.\mathbb{E}_{D}\left[\mathbb{1}\left(h(X) \neq h^{\prime}(X)\right)\right]\right]}_{\begin{array}{c}
\text { Expected Disagreement } \\
\mathbb{D}\left(h, h^{\prime}\right)
\end{array}} .
$$

Specialized oracle bound for binary classification

$\mathbb{D}\left(h, h^{\prime}\right)$ only depends on unlabeled data!!

From oracle to empirical bounds

PAC-Bayes- λ (Thiemann et al., 2017):
For π independent of S, with probability at least $1-\delta$ for all ρ and $\lambda \in(0,2)$

From oracle to empirical bounds

PAC-Bayes- λ (Thiemann et al., 2017):
For π independent of S, with probability at least $1-\delta$ for all ρ and $\lambda \in(0,2)$

$$
\mathbb{E}_{\rho}[L(h)] \leq \underbrace{\frac{\mathbb{E}_{\rho}[\hat{L}(h, S)]}{1-\frac{\lambda}{2}}+\frac{\mathrm{KL}(\rho \| \pi)+\ln (2 \sqrt{n} / \delta)}{\lambda\left(1-\frac{\lambda}{2}\right) n}}_{\text {PAC-Bayesian upper bound }}
$$

From oracle to empirical bounds

PAC-Bayes- λ (Thiemann et al., 2017):
For π independent of S, with probability at least $1-\delta$ for all ρ and $\lambda \in(0,2)$ and $\gamma>0$

$$
\mathbb{E}_{\rho}[L(h)] \leq \underbrace{\frac{\mathbb{E}_{\rho} \rho(\hat{L}(h, S)]}{1-\frac{\lambda}{2}}+\frac{\operatorname{KL}(\rho \| \pi)+\ln (2 \sqrt{n} / \delta)}{\lambda\left(1-\frac{\lambda}{2}\right) n}}_{\text {PAC-Bayesian upper bound }}
$$

$$
\mathbb{E}_{\rho}[L(h)] \geq \underbrace{\left(1-\frac{\gamma}{2}\right) \mathbb{E}_{\rho}[\hat{L}(h, S)]-\frac{\mathrm{KL}(\rho \| \pi)+\ln (2 \sqrt{n} / \delta)}{\gamma n}}_{\text {PAC-Bayesian lower bound }}
$$

Second-order PAC-Bayesian bound

$$
L\left(\mathrm{MV}_{\rho}\right) \leq 4 \overbrace{\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}^{\begin{array}{c}
\text { Expected } \\
\text { Tandem Loss }
\end{array}}
$$

Second-order PAC-Bayesian bound

$$
L\left(\mathrm{MV}_{\rho}\right) \leq 4 \overbrace{\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}^{\begin{array}{c}
\text { Expected } \\
\text { Eandem Loss }
\end{array}}
$$

$$
\leq 4(\underbrace{\frac{\overbrace{\rho_{\rho^{2}}\left[\hat{L}\left(h, h^{\prime}, S\right)\right]}^{\text {Tandem loss }}}{1-\lambda / 2}}_{\text {PAC-Bayes upper bound on } \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}+\frac{2 \mathrm{KL}(\rho \| \pi)+\ln \frac{2 \sqrt{n}}{\delta}}{n \lambda(1-\lambda / 2)})
$$

Second-order PAC-Bayesian bound

$$
L\left(\mathrm{MV}_{\rho}\right) \leq 4 \overbrace{\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}^{\begin{array}{c}
\text { Expected } \\
\text { Tandem Loss }
\end{array}}
$$

$$
\leq 4(\underbrace{\frac{\overbrace{\rho_{\rho^{2}}\left[\hat{L}\left(h, h^{\prime}, S\right)\right]}^{\text {Tandem loss }}}{1-\lambda / 2}}_{\text {PAC-Bayes upper bound on } \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}+\frac{2 \mathrm{KL}(\rho \| \pi)+\ln \frac{2 \sqrt{n}}{\delta}}{n \lambda(1-\lambda / 2)})
$$

Advantages

- Takes correlation of errors into account
- Easy to minimize and tight
- Minimization of the bound does not degrade the test error

Second-order PAC-Bayesian bound for binary classification

Expected loss of majority vote

> Expected Disagreement

$$
\overbrace{L\left(\mathrm{MV}_{\rho}\right)} \leq 4 \mathbb{E}_{\rho}[L(h)]-2 \overbrace{\mathbb{E}_{\rho^{2}}\left[\mathbb{D}\left(h, h^{\prime}\right)\right]}
$$

Second-order PAC-Bayesian bound for binary classification

$$
\begin{aligned}
& \overbrace{L\left(\mathrm{MV}_{\rho}\right)}^{\begin{array}{c}
\text { Expected loss of } \\
\text { majority vote }
\end{array}} \leq 4 \mathbb{E}_{\rho}[L(h)]-2 \overbrace{\mathbb{E}_{\rho^{2}}\left[\mathbb{D}\left(h, h^{\prime}\right)\right]}^{\text {Expected Disagreeme }} \\
& \quad \leq 4(\underbrace{\frac{\mathbb{E}_{\rho}[\hat{L}(h, S)]}{1-\lambda / 2}}_{\text {PAC-Bayes upper bound on } \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]}+\underbrace{\frac{\mathrm{KL}(\rho \| \pi)+\ln (4 \sqrt{n} / \delta)}{n \lambda(1-\lambda / 2)}})
\end{aligned}
$$

Second-order PAC-Bayesian bound for binary classification

Second-order PAC-Bayesian bound for binary classification

- It can exploit unlabeled data

Empirical evaluation

- Test error of optimized majority vote over uniformly weighted baseline for first order [FO] and new second order [TND] bound (the lower the better)

Empirical evaluation

- The optimized weights ρ^{\star} generated by the first order [FO] and the new second order [TND] bound.

Pendigits

Summary

State-of-the-art

- Minimization of existing first-order bound significantly deteriorates the test error

Summary

State-of-the-art

- Minimization of existing first-order bound significantly deteriorates the test error
- Existing second-order bounds are looser and can not be optimized

Summary

State-of-the-art

- Minimization of existing first-order bound significantly deteriorates the test error
- Existing second-order bounds are looser and can not be optimized

Contributions

- Novel second order oracle bound for the weighted majority vote based on second order Markov's inequality
- Novel second order PAC-Bayesian bound for the weighted majority vote

Summary

State-of-the-art

- Minimization of existing first-order bound significantly deteriorates the test error
- Existing second-order bounds are looser and can not be optimized

Contributions

- Novel second order oracle bound for the weighted majority vote based on second order Markov's inequality
- Novel second order PAC-Bayesian bound for the weighted majority vote
- Minimization of the bound guides weighting of ensemble members and does not deteriorate the test error

