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Abstract

Model Misspecification

Virtually any model we use does not perfectly represent reality.

We mostly work in the model misspecification regime.

Contributions

Generalization analysis of Bayesian learning under model misspecification.

Bayesian model averaging is suboptimal for generalization.

New learning framework which explicitly addresses model misspecfication.

Empirical evaluations on Bayesian deep learning illustrate this approach.
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Introduction

Assumption 1: I.I.D. Data

There exists an underlying distribution ν(x) generating the training/test data.

The training data sample, D = {x1, . . . ,xn}, is i.i.d. from ν(x).
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Introduction

Assumption 2: Model misspecification

Our model class only approximates reality (not prefect).

p(x|θ) is our (parametric) probabilistic model class.

∀θ ∈ Θ ν 6= p(·|θ)
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Introduction

Assumption 3: Likelihood is Upper-Bounded

There exists a M > 0
∀x ∈ X , ∀θ ∈ Θ p(·|θ) ≤M,

It holds in supervised classification (e.g. M = 1) and it may require to constrain
the parameter space (e.g. the variance of the Gaussian higher than ε > 0),.
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The learning problem

Notation: ρ(θ) is a probability distribution over the parameters of my model.

The predictive posterior distribution for a given ρ(θ),

p(x) =

∫
p(x|θ)ρ(θ)dθ = Eρ(θ)[p(x|θ)]

The learning problem is defined as,

ρ? = arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
p(x)

)

... is equivalent to:

ρ? = arg min
ρ

Eν(x)[− lnEρ(θ)[p(x|θ)]]︸ ︷︷ ︸
CE(ρ)

CE(ρ) measures the generalization error (or the predicitive risk) associated to ρ.
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The learning strategy

How to solve this problem

ρ? = arg min
ρ

CE(ρ)︸ ︷︷ ︸
Generalization

Error

if we do not have access to ν(x)

The learning strategy

The solution is to employ upper-bounds:

CE(ρ) ≤︸︷︷︸
Jensen inequality

Oracle-Bound(ρ) .︸︷︷︸
w.p. (1−ξ)

Empirical-Bound(ρ,D, ξ)

... and minimize Empirical-Bound(ρ,D, ξ),

min
ρ

Empirical-Bound(ρ,D, ξ)

The quality of the solution is going to depend of the quality of the bounds.
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First-order Jensen bounds and the Bayesian posterior
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First-order Jensen bounds and the Bayesian posterior

CE(ρ)︸ ︷︷ ︸
Generalization

Error

Jensen Inequality︷︸︸︷
≤ Eρ[L(θ)]︸ ︷︷ ︸

Oracle bound

w.p. (1−ξ)︷︸︸︷
. Eρ[L̂(θ, D)] +

KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

L(θ) is the expected log-loss, L(θ) = −Eν(x)[ln p(x|θ)].

L̂(θ, D) is the empirical log-loss, L(θ, D) = − 1
n

ln p(D|θ).
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Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

The learning strategy is to minimize the PAC-Bayes bound,

ρ? = arg min
ρ

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

= arg max
ρ

Eρ(θ)[ln p(D|θ)]−KL(ρ, π)︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

ρ? is the Bayesian posterior,

ρ? = p(θ|D) =
p(D|θ)π(θ)∫
p(D|θ)π(θ)dθ

The Bayesian posterior is a proxy

p(θ|D) ≈ arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
Predictive
posterior

)

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 9



Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

The learning strategy is to minimize the PAC-Bayes bound,

ρ? = arg min
ρ

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

= arg max
ρ

Eρ(θ)[ln p(D|θ)]−KL(ρ, π)︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

ρ? is the Bayesian posterior,

ρ? = p(θ|D) =
p(D|θ)π(θ)∫
p(D|θ)π(θ)dθ

The Bayesian posterior is a proxy

p(θ|D) ≈ arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
Predictive
posterior

)

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 9



Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

The learning strategy is to minimize the PAC-Bayes bound,

ρ? = arg min
ρ

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

= arg max
ρ

Eρ(θ)[ln p(D|θ)]−KL(ρ, π)︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

ρ? is the Bayesian posterior,

ρ? = p(θ|D) =
p(D|θ)π(θ)∫
p(D|θ)π(θ)dθ

The Bayesian posterior is a proxy

p(θ|D) ≈ arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
Predictive
posterior

)

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 9



Minimizing a first-order PAC-Bayes bound

The Bayesian posterior (Germain et al. 2016)

The learning strategy is to minimize the PAC-Bayes bound,

ρ? = arg min
ρ

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

= arg max
ρ

Eρ(θ)[ln p(D|θ)]−KL(ρ, π)︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

ρ? is the Bayesian posterior,

ρ? = p(θ|D) =
p(D|θ)π(θ)∫
p(D|θ)π(θ)dθ

The Bayesian posterior is a proxy

p(θ|D) ≈ arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
Predictive
posterior

)

Learning under model misspecification First-order Jensen bounds and the Bayesian posterior 9



Is the Bayesian approach an optimal learning strategy?

The Bayesian learning strategy,

CE(ρ)︸ ︷︷ ︸
Generalization

Error

Jensen Inequality︷︸︸︷
≤ Eρ[L(θ)]︸ ︷︷ ︸

First-Order
Jensen bound

w.p. (1−ξ)︷︸︸︷
. Eρ[L̂(θ, D)] +

KL(ρ, π)

n
+ cte︸ ︷︷ ︸

PAC-Bayes bound (Alquier et al. 2016)

The Bayesian posterior converges to the minimum of Eρ[L(θ)].

The minimum of the first-order Jensen bound Eρ[L(θ)] is

A Dirac-delta distribution centered around θ?J

θ?J = arg min
θ
KL(ν(x), p(x|θ))

Is the Bayesian approach an optimal learning strategy?

Is this Dirac-delta distribution centered around θ?J a good proxy of ρ??

ρ? = arg min
ρ
KL( ν(x)︸︷︷︸

Data
distribution

, Eρ(θ)[p(x|θ)]︸ ︷︷ ︸
Predictive
posterior

)
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Bayesian posterior optimal under perfect specification

arg min
ρ

CE(ρ)︸ ︷︷ ︸
Generalization

Error

= δθJ (θ)︸ ︷︷ ︸
Dirac-Delta
distribution
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Bayesian posterior optimal under perfect specification

arg min
ρ

CE(ρ)︸ ︷︷ ︸
Generalization

Error

= δθJ (θ)︸ ︷︷ ︸
Dirac-Delta
distribution

= arg min
ρ

Eρ[L(θ)]︸ ︷︷ ︸
First-Order

Jensen Bound
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Bayesian posterior not optimal under misspecification

arg min
ρ

CE(ρ)︸ ︷︷ ︸
Generalization

Error

6= δθJ (θ)︸ ︷︷ ︸
Dirac-Delta
distribution
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Bayesian posterior not optimal under misspecification

CE(ρ)︸ ︷︷ ︸
Generalization

Error

≤ Eρ[L(θ)] −

Variance︷︸︸︷
V(ρ)︸ ︷︷ ︸

Second-order Jensen bound
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Bayesian posterior not optimal under misspecification

CE(ρ)︸ ︷︷ ︸
Generalization

Error

≤ Eρ[L(θ)]− V(ρ)︸ ︷︷ ︸
Second-order
Jensen bound

. Eρ[L̂(θ, D)]−

Empirical Variance︷ ︸︸ ︷
V̂(ρ,D) +

KL(ρ, π)

n
+ cte︸ ︷︷ ︸

Second-order PAC-Bayes bound
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Learning by Minimizing second-order PAC-Bayes bounds
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A new learning framework

PAC2-Bayesian Learning

A variational-like method,

arg min
ρ∈Q

Eρ(θ)[L(θ, D)]− V̂(ρ,D) +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

Second-order PAC-Bayes Bound

where Q is a tractable family of densities (i.e. fully factorized Gaussian distribution).

This is a generalized variational inference method (Knoblauch et al. 2019).

Different solvers are available in the literature (Wang et al. 2017).

Variational Inference

Standard Variational methods tries to minimize the first-order PAC-Bayes bound,

arg min
ρ∈Q

Eρ(θ)[L(θ, D)] +
KL(ρ, π)

n
+ cte︸ ︷︷ ︸

First-order PAC-Bayes Bound
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Ensemble Learning (Finite Mixture Models)
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Defining an ensemble

Mixture of Dirac-delta distribution

ρ defined as a mixture of Dirac-delta distributions parametrized by {θ1, . . . ,θE},

ρ(θ) =
E∑
j=1

1

E
δθj

(θ)

where δθj
is a Dirac-delta distribution centered around θj

The predictive posterior is defined as

pE(x) = Eρ(θ)[p(x|θ)] =
1

E

E∑
j=1

p(x|θj)

The learning problem,

{θ?1, . . . ,θ?E} = arg min
{θ1,...,θE}

KL(ν(x), pE(x))
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Experimental Evaluation with Toy Data Sets
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Misspecified Linear Regression Model

Test Log-likelihood=−13.09

Test Log-likelihood=−7.89

ν(y|x) = N (µ = 1 + x, σ2 = 5)

p(y|x,θ) = N (µ = θ0 + θ1x, σ
2 = 1)

ρ(θ) = MVN (µ,Σ)
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Bayesian Multilayer Perceptron

Test Log-likelihood=−50.15

Test Log-likelihood=−25.23

ν(y|x) = N (µ = s(x), σ2 = 10)

p(y|x,θ) = N (µ = MLP20(x;θ), σ2 = 1)

ρ(θ) =
∏
i

N (µi, σi)
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Ensemble of Multilayer Perceptrons

Test Log-likelihood=−15.91

ν(y|x) = N (µ = s(x), σ2 = 10)

p(y|x,θ) = N (µ = MLP20(x;θ), σ2 = 1)

ρ(θ) =

3∑
j=1

1

E
δθj

(θ)
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Experimental Evaluation on real data sets
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Data Sets

Fahsion-Mnist CIFAR 10
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Prediction Tasks

Fahsion-Mnist CIFAR 10

Task 1

Supervised Classification: 10 classes.
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Prediction Tasks

x

y

Self-Supervised Classification

Task 2 as a regression/Normal data model.

Task 3 as a Binomial data model.
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Variational Approach (Infinite Mixture Models)

(the lower the better)

MLP model with 20 hidden units, Relu activation.

100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)

(the lower the better)

Models initialized with the same parameters.

MLP model with 20 hidden units, Relu activation.

100 data batches, 100 epochs, AdamOptimizer default learning rate.
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Ensemble Approach (Finite Mixture Models)
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Conclusions and Future Works
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Conclusions and Future Works

The Bayesian approach seems to be not optimal strategy for learning.

Second-order PAC-Bayesian bounds directly address mode misspecification.

Novel variational and ensemble learning algorithms.

Future works:

Extensive empirical evaluation (new SOTA results in Bayesian deep learning?).

What happens at the interpolation regime?

Related work on Majority Voting:

Masegosa, A. R., Lorenzen, S. S., Igel, C., & Seldin, Y. Second order
PAC-Bayesian bounds for the weighted majority vote. NeurIPS 2020.

https://github.com/PGM-Lab/PAC2BAYES
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