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Weighted Majority Vote

• A central technique to combine predictions of multiple classifiers
• Used in random forest, boosting, bagging, etc
• Wins most ML competitions
Prediction Rule

MVρ(X) = argmax
y∈Y

Eh∼ρ[1(h(X) = y)].

Key Power: Cancellation of errors effect

Previous Work

Standard Analysis
If a majority vote makes an error, at least a ρ-weighted half of the
classifiers have made an error:

L(MVρ) ≤ P

(
Eρ[1(h(X) ̸= Y )]︸ ︷︷ ︸

Z

≥ 0.5

)

First Order Oracle Bound
By Markov’s inequality P(Z ≥ ε) ≤ E [Z] /ε:

L(MVρ) ≤ 2ED[Eρ[1(h(X) ̸= Y )]] = 2Eρ[L(h)]

Issues: Ignores correlation

C-bounds [1]
By Chebyshev-Cantelli inequality, if E [Z] < 0.5,

P(Z ≥ 0.5) ≤=
E
[
Z2
]
− E [Z]2

0.25− E [Z] + E [Z2]

Issues: Difficult to estimate and optimize

Tandem Bound (TND)[2]
Tandem loss ℓ(h, h′) := 1(h(X) ̸= Y ∧ h′(X) ̸= Y ).

By second order Markov’s inequality P(Z ≥ ε) ≤ E
[
Z2
]
/ε2,

L(MVρ) ≤ 4Eρ2[L(h, h
′)].

Issues: The second order Markov’s inequality is not as tight as the
Chebyshev-Cantelli inequality

Our Contributions

Theorem 1 (Parametrized Chebyshev-Cantelli inequality). For any
ε > 0 and all µ < ε

P(Z ≥ ε) ≤
E
[
(Z − µ)2

]
(ε− µ)2

=
E
[
Z2
]
− 2µE [Z] + µ2

(ε− µ)2
.

• Taking µ∗ = E [Z]− V[Z]
ε−E[Z] recovers Chebyshev-Cantelli inequality

• Taking µ = 0 recovers second order Markov’s inequality
Main Advantage:
No distribution dependent quantities in the denominator
⇒ Easy to optimize & estimate

Chebyshev-Cantelli bound with tandem loss estimate
Oracle Bound: In multiclass classification, if µ < 0.5,

L(MVρ) ≤
Eρ2[L(h, h

′)]− 2µEρ[L(h)] + µ2

(0.5− µ)2
.

From Oracle to Empirical: By PAC-Bayes-kl inequality [3],

kl
(
Eρ[L̂(h, S)]

∥∥∥Eρ [L(h)]
)
≤ KL(ρ∥π) + ln(2

√
n/δ)

n

Chebyshev-Cantelli bound with µ-tandem loss estimate
µ-tandem loss ℓµ(h, h′) := (1(h(X) ̸= Y )− µ)(1(h′(X) ̸= Y )− µ)

Oracle Bound: In multiclass classification, if µ < 0.5,

L(MVρ) ≤
Eρ2[Lµ(h, h

′)]

(0.5− µ)2
.

From Oracle to Empirical:
Theorem 2 (PAC-Bayes-Bennett). Assume ℓ̃(·, ·) ≤ b and the cor-
responding variance is finite. Let ϕ(x) = ex − x − 1. Then for
γ > 0,

Eρ[L̃(h)] ≤ Eρ[
ˆ̃L(h, S)] +

ϕ(γb)

γb2
Eρ[Ṽ(h)] +

KL(ρ∥π) + ln 1
δ

γn
.

• Improves on the PAC-Bayes-Bernstein inequality by [4]
• The oracle variance Eρ[Ṽ(h)] can be bounded by Eq.(15) of [5]

Experiments

SV
M
G
uide1

Phishing

Splice

w1a
Cod-R

N
A

A
dult

0.8

0.9

1

1.2

L̂
(M

V
ρ
∗ ,
S
te
st
)/
L̂
(M

V
u
,S

te
st
)

Binary

Connect-4

Shuttle

Pendigits

Letter

SatIm
age

Sensorless

U
SPS

M
N
IST

Fashion

Multiclass
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• CCTND: The empirical Chebyshev-Cantelli bound with tandem
loss estimate

• CCPBB: The empirical Chebyshev-Cantelli bound with µ-tandem
loss estimate

Summary

• Parametric form of Chebyshev-Cantelli inequality
– No variance in the denominator and as tight as the original bound
– Enables efficient minimization and empirical estimation

• New second order oracle bounds for weighted majority vote
– Resulting empirical bounds are amenable to efficient minimiza-

tion
• PAC-Bayes-Bennett inequality

– Improves on the PAC-Bayes-Bernstein inequality by [4]
– Can be used for bounding the µ-tandem loss
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