Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote
Yi-Shan Wu, Andrés R. Masegosa, Stephan S. Lorenzen, Christian Igel, Yevgeny Seldin yswu@di.ku.dk, arma@cs.aau.dk, \{lorenzen, igel, seldin\}@di.ku.dk

Weighted Majority Vote

- A central technique to combine predictions of multiple classifiers
- Used in random forest, boosting, bagging, etc
- Wins most ML competitions

Prediction Rule

$$
\operatorname{MV}_{\rho}(X)=\arg \max _{y \in \mathcal{Y}} \mathbb{E}_{h \sim \rho}[\mathbb{1}(h(X)=y)] .
$$

Key Power: Cancellation of errors effect
Previous Work
Standard Analysis
If a majority vote makes an error, at least a ρ-weighted half of the classifiers have made an error:

$$
L\left(\mathrm{MV}_{\rho}\right) \leq \mathbb{P}(\underbrace{\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]}_{Z} \geq 0.5)
$$

First Order Oracle Bound
By Markov's inequality $\mathbb{P}(Z \geq \varepsilon) \leq \mathbb{E}[Z] / \varepsilon$:

$$
L\left(\mathrm{MV}_{\rho}\right) \leq 2 \mathbb{E}_{D}\left[\mathbb{E}_{\rho}[\mathbb{1}(h(X) \neq Y)]\right]=2 \mathbb{E}_{\rho}[L(h)]
$$

Issues: Ignores correlation
C-bounds [1]
By Chebyshev-Cantelli inequality, if $\mathbb{E}[Z]<0.5$,

$$
\mathbb{P}(Z \geq 0.5) \leq=\frac{\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2}}{0.25-\mathbb{E}[Z]+\mathbb{E}\left[Z^{2}\right]}
$$

Issues: Difficult to estimate and optimize
Tandem Bound (TND)[2]
Tandem loss $\ell\left(h, h^{\prime}\right):=\mathbb{1}\left(h(X) \neq Y \wedge h^{\prime}(X) \neq Y\right)$.
By second order Markov's inequality $\mathbb{P}(Z \geq \varepsilon) \leq \mathbb{E}\left[Z^{2}\right] / \varepsilon^{2}$,

$$
L\left(\mathrm{MV}_{\rho}\right) \leq 4 \mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]
$$

Issues: The second order Markov's inequality is not as tight as the Chebyshev-Cantelli inequality

Our Contributions
Theorem 1 (Parametrized Chebyshev-Cantelli inequality). For any $\varepsilon>0$ and all $\mu<\varepsilon$

$$
\mathbb{P}(Z \geq \varepsilon) \leq \frac{\mathbb{E}\left[(Z-\mu)^{2}\right]}{(\varepsilon-\mu)^{2}}=\frac{\mathbb{E}\left[Z^{2}\right]-2 \mu \mathbb{E}[Z]+\mu^{2}}{(\varepsilon-\mu)^{2}}
$$

- Taking $\mu^{*}=\mathbb{E}[Z]-\frac{\mathbb{V}[Z]}{\varepsilon-\mathbb{E}[Z]}$ recovers Chebyshev-Cantelli inequality
- Taking $\mu=0$ recovers second order Markov's inequality

Main Advantage:
No distribution dependent quantities in the denominator \Rightarrow Easy to optimize \& estimate

Chebyshev-Cantelli bound with tandem loss estimate
Oracle Bound: In multiclass classification, if $\mu<0.5$,

$$
L\left(\mathrm{MV}_{\rho}\right) \leq \frac{\mathbb{E}_{\rho^{2}}\left[L\left(h, h^{\prime}\right)\right]-2 \mu \mathbb{E}_{\rho}[L(h)]+\mu^{2}}{(0.5-\mu)^{2}}
$$

From Oracle to Empirical: By PAC-Bayes-kl inequality [3],

$$
\operatorname{kl}\left(\mathbb{E}_{\rho}[\hat{L}(h, S)] \| \mathbb{E}_{\rho}[L(h)]\right) \leq \frac{\operatorname{KL}(\rho \| \pi)+\ln (2 \sqrt{n} / \delta)}{n}
$$

Chebyshev-Cantelli bound with μ-tandem loss estimate
μ-tandem loss $\ell_{\mu}\left(h, h^{\prime}\right):=(\mathbb{1}(h(X) \neq Y)-\mu)\left(\mathbb{1}\left(h^{\prime}(X) \neq Y\right)-\mu\right)$ Oracle Bound: In multiclass classification, if $\mu<0.5$,

$$
L\left(\mathrm{MV}_{\rho}\right) \leq \frac{\mathbb{E}_{\rho^{2}}\left[L_{\mu}\left(h, h^{\prime}\right)\right]}{(0.5-\mu)^{2}}
$$

From Oracle to Empirical:
Theorem 2 (PAC-Bayes-Bennett). Assume $\tilde{\ell}(, \cdot) \leq b$ and the corresponding variance is finite. Let $\phi(x)=e^{x}-x-1$. Then for $\gamma>0$,

$$
\mathbb{E}_{\rho}[\tilde{L}(h)] \leq \mathbb{E}_{\rho}[\hat{\tilde{L}}(h, S)]+\frac{\phi(\gamma b)}{\gamma b^{2}} \mathbb{E}_{\rho}[\tilde{\mathbb{V}}(h)]+\frac{\mathrm{KL}(\rho \| \pi)+\ln \frac{1}{\delta}}{\gamma n}
$$

- Improves on the PAC-Bayes-Bernstein inequality by [4]
- The oracle variance $\mathbb{E}_{\rho}[\tilde{\mathbb{V}}(h)]$ can be bounded by Eq.(15) of [5]

K \varnothing BENHAVNS UNIVERSITET

AALBORG UNIVERSITET

Experiments

- CCTND: The empirical Chebyshev-Cantelli bound with tandem loss estimate
- CCPBB: The empirical Chebyshev-Cantelli bound with μ-tandem loss estimate

Summary

- Parametric form of Chebyshev-Cantelli inequality
- No variance in the denominator and as tight as the original bound - Enables efficient minimization and empirical estimation
- New second order oracle bounds for weighted majority vote
- Resulting empirical bounds are amenable to efficient minimization
- PAC-Bayes-Bennett inequality
- Improves on the PAC-Bayes-Bernstein inequality by [4]
- Can be used for bounding the μ-tandem loss

References

[2] A. R. Masegegas, S.S. Lorerenen, C. I Igel, and Y. Seldin, "Seoond order PAC-Byyseian bounds for the weighted majority vote", in Advances

${ }^{2002}$ (4) Sedrin
[4] Y. Sedin, F. Lavidetete, N. Cese-Bianchi, J. Shave-Taylor, and P. Auer, "PAC-Bayesian inequalities for martingales," IEEE Transactions
on Information Theory, vol. 58,2012
$\underset{\substack{\text { ji. T. Toss } \\ 2013 .}}{ }$

