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Weighted Majority Vote

® (Central technique for combining predictions of multiple classifiers
(boosting, bagging, etc.)
® Wins most ML competitions.

Prediction rule
p-weighted majority vote MV, predicts

MV, (X) = argmax &, [1(h(X) = ).

Key Power
Cancellation of errors effect: Errors average out when
® errors of individual classifiers are independent

¢ individual classifiers have expected error less than 0.5



.‘? UNIVERSITY OF COPENHAGEN 06-12-2021 b

Standard Analysis

If a majority vote makes an error, at least a p-weighted half of the
classifiers have made an error:

L(MV,) < B(E,[1(h(X) # )] > 0.5)
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Standard Analysis

If a majority vote makes an error, at least a p-weighted half of the
classifiers have made an error:

L(MV,) < B(E,[1(h(X) # )] > 0.5)

First Order Oracle Bound
By Markov's inequality P(Z > ¢) < E[Z] /e:

L(MV,) < 2Ep[E,[1(h(X) # Y)]] = 2E,[L(h)]
;v—/

Gibbs loss

Issues
® Ignores correlation of predictions (main power of MV)

® Optimization of corresponding PAC-Bayes bound degrades the
test error [Lorenzen et al., 2019]

9
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C-bounds [Lacasse et al., 2007, Germain et al., 2015,
Laviolette et al., 2017]

P(Z>05)=P(Z-E[Z] >05-E[Z])
by Chebyshev-Cantelli inequality, if E[Z] < 0.5,

- \%4

= (05-E[Z)®+V[Z
E[2]-E[2]

T 025-E[J +E|[Z]

since V[Z) =E [Z%] - E[Z*.
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C-bounds [Lacasse et al., 2007, Germain et al., 2015,
Laviolette et al., 2017]

P(Z>05)=P(Z-E[Z] >05-E[Z])
by Chebyshev-Cantelli inequality, if E[Z] < 0.5,

) v(Z
~ (05 —-E[Z)2+V][Z
E(2] -E[2]

T 025-E[J +E|[Z]
since V[Z| =E [22] - E[Z°.
Issues
® E [Z%] and E[Z] in the denominator make empirical estimation
and optimization of the bound difficult

e Empirically weaker than the first order bound [Lorenzen et al.,
2019]

11
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Tandem Bound (TND)[Masegosa et al., 2020]

Let Z=E,[1(h(X) # Y)]. By second order Markov's inequality
P(Z>¢) <E|[2Z?] /e*
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Tandem Bound (TND)[Masegosa et al., 2020]

Let Z=E,[1(h(X) # Y)]. By second order Markov's inequality
P(Z>¢) <E|[2Z?] /e*

L(MV,) < 4Ep[E,[1(h(X) # V)]’

4E 2 [L(h, .
~—_—
expected tandem loss

Ep2[] = Ep~pppl]
L(h, W) =Eplt(h, H)]
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Tandem Bound (TND)[Masegosa et al., 2020]

Let Z=E,[1(h(X) # Y)]. By second order Markov's inequality
P(Z>e) <E (2] /e
L(MV,)) < 4Ep[E,[L(h(X) # Y)]’]
=4E; 2[L(h, )] .
——

]Ep2 [] — ]Eth,h/Np['] expected tandem loss
L(h, H') = Ep[t(h, 1)]
Tandem Loss

((h K =1 (h(X) £ YAH(X) £ Y)

counts an error only if h and h' both err on a sample (X, Y).
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Tandem Bound (TND)[Masegosa et al., 2020]

Let Z=E,[1(h(X) # Y)]. By second order Markov's inequality
P(Z>¢) <E|[2Z?] /e*

L(MV,) < 4Ep[E,[1(h(X) # Y)]?]
— AR p[L(h, )] .
~—_—

expected tandem loss

Ey2[-] = Epp,impl]
L(h,h") = Ep[t(h, )]
Tandem Loss

((h K =1 (h(X) £ YAH(X) £ Y)

counts an error only if h and h' both err on a sample (X, Y).
Issues

® Not as tight as the C-bound



.0 UNIVERSITY OF COPENHAGEN 06-12-2021 16

State-of-the-art Summary

First order bound
® |gnores correlations

® Deteriorates test loss
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State-of-the-art Summary

First order bound
® |gnores correlations
® Deteriorates test loss
C-bound
¢ Difficult to estimate and optimize due to V [Z] in denominator
Tandem bound
® Accounts for correlations
® Easy to optimize
® Not as tight as C-bound
Our contribution

® New form of Chebyshev-Cantelli inequality that has tightness of
C-bound and is easier to optimization
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Our Contribution (1)

New form of the Chebyshev-Cantelli inequality, which is convenient for
optimization.
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Our Contribution (1)

New form of the Chebyshev-Cantelli inequality, which is convenient for
optimization.
Theorem (Parametrized Chebyshev-Cantelli inequality)
Foranye>0and p<e
E[(Z- p)?

(e —p)?

P(Z>¢) <
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Our Contribution (1)

New form of the Chebyshev-Cantelli inequality, which is convenient for
optimization.

Theorem (Parametrized Chebyshev-Cantelli inequality)
Foranye>0and p<e

E[(Z- p)?]
St " |
Proof.
P(Z> 5)
_ 2
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Relation to Existing Second Order Bounds

Foranye >0and u < e

E[(Z-p)?] E[Z]-2uE[Z] + p?
Feze <~ = -2
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Relation to Existing Second Order Bounds

Foranye >0and u < e

E[(Z-p)?] E[Z]-2uE[Z] + p?
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® Bound is minimized by pu* = E[Z] — EYI[EZ[]Z]
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E[(Z-p)?] E[Z]-2uE[Z] + p?
Feze <~ = -2

® Bound is minimized by pu* = E[Z] — EYI[EZ[]Z]

® Substitution of u* into the bound recovers Chebyshev-Cantelli
inequality
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Relation to Existing Second Order Bounds

Foranye >0and u < e

E[(Z-p)?] E[Z2] -2uE[Z] + p?
(€ — p)? (€ —n)? '

P(Z>¢) <

® Bound is minimized by pu* = E[Z] — EYI[EZ[]Z]

® Substitution of p* into the bound recovers Chebyshev-Cantelli
inequality
® Taking p = 0 recovers second order Markov's inequality
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Relation to Existing Second Order Bounds

Foranye >0and u < e

E[(Z-p)?] E[Z2] -2uE[Z] + p?
(€ — p)? (€ —n)? '

P(Z>¢) <

® Bound is minimized by pu* = E[Z] — EYI[EZ[]Z]

® Substitution of p* into the bound recovers Chebyshev-Cantelli
inequality
® Taking p = 0 recovers second order Markov's inequality

Advantages
® Easy to estimate and optimize, as the second order Markov

® As tight as the Chebyshev-Cantelli inequality

28
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Theorem 7

Foranye >0and p <e

P(Z>¢) < =
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Theorem 7

Foranye >0and p <e
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Theorem 7

In multiclass classification, if u < 0.5,

Ep2[L(h7 h/)] - QNEP[L(h)] + :UJ2.

L(MV,) < 05—

06-12-2021
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From Oracle to Empirical

In multiclass classification, if u < 0.5,
E 2 [L(h, H)] = 2uE,[L(h)] + p?
(0.5 — pu)? '

To bound E2[L(h, h')] and E,[L(h)] by their empirical counterparts,
we use

L(MV,) <
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From Oracle to Empirical

In multiclass classification, if u < 0.5,

E 2 [L(h, H)] — 2pE,[L(h)] + p?
(0.5 — pu)? '
To bound E2[L(h, h')] and E,[L(h)] by their empirical counterparts,

we use
PAC-Bayes-kl inequality [Seeger, 2002]:

L(MV,) <

+1n(24/n/5)

n

d (£, (L, S =, (L)) < “HAT
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From Oracle to Empirical

In multiclass classification, if u < 0.5,

Ep2[L(h7 h/)] - QNEP[L(h)] + :UJ2
(0.5 — pu)? '

To bound E2[L(h, h')] and E,[L(h)] by their empirical counterparts,

we use
PAC-Bayes-\ inequality [Thiemann et al., 2016]:

L(MV,) <

E,[L(h,S)] KL(p||m) +In(2\/n/6)
E, [L(h)] < pl_% A(1=2)n
KL(p||) +In(2y/n/d)
yn

T
E, [L(h)] > (1 - 5) Eo[L(h, S)] —
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From Oracle to Empirical

In multiclass classification, if u < 0.5,

E 2 [L(h, H)] — 2pE,[L(h)] + p?
(0.5 — pu)? '
To bound E2[L(h, h')] and E,[L(h)] by their empirical counterparts,

we use
PAC-Bayes-\ inequality [Thiemann et al., 2016]:

E,[L(h,S)]  KL(p||7) + In(2y/n/5)
E, [L(h)] < pl_% A(1=2)n
KL(p||7) +In(2y/n/d)
yn

L(MV,) <

T
E, [L(h)] > (1 - 5) Eo[L(h, S)] —

= Chebyshev-Cantelli bound with TND empirical loss estimate
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Theorem 8

Foranye >0 and u < e

E[(Z—p)?] E[Z]-2uE[Z+u?
P(Z>e) < EE_M’;Q)]: 2] 24+
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Theorem 8

Foranye >0 and u < e

E[(Z-p?] _E[Z]-2uE[Z] +4°
(e — n)? (e —n)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],

P(Z>¢) <
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Theorem 8

Foranye >0 and u < e

E[(Z-p?] _E[Z]-2uE[Z] +4°
(e — n)? (e —n)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],

E [(Z - p)*] = Epl(Ep[(L(h(X) # Y) = w)])’]

P(Z>¢) <
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Theorem 8

Foranye >0 and u < e
E[(Z-p?] _E[Z]-2uE[Z] +4°
(e — n)? (e —n)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],

E [(Z - p)*] = Epl(Ep[(L(h(X) # Y) = w)])’]
= Ep[E[(L(h(X) # ) — w)(L(H(X) #Y) -

P(Z>¢) <




.0 UNIVERSITY OF COPENHAGEN 06-12-2021 40

Theorem 8

Foranye >0 and u < e

E[(Z-p?] _E[Z]-2uE[Z] +4°
(e — n)? (e —n)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],

]

E [(Z— )] = Ep[(E,[(L(h(X) # ¥) — m)])’]
[
[

P(Z>¢) <

= ED[ 2 [(L(h(X) # Y) = ) (L(H(X) # Y) = )]
E 2 [Ep[(L(h(X) # Y) — p)(L(H(X) # Y) — )]
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Theorem 8

Foranye >0 and u < e

E[(Z-n)? E[Z]-2uE[Z+ p?

Bzze) < (e—mw? (e — p)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],
E [(Z— )] = Ep[(E,[(L(h(X) # ¥) — m)])’]
= ED[ 2 [(L(h(X) # Y) = ) (L(H(X) # Y) = )]
E,2[Ep[(L(h(X) # Y) — p)(L(H (X) # ) — p)l]
= Ep[Lu(hH)]
————

expected tandem loss with p-offset



.? UNIVERSITY OF COPENHAGEN 06-12-2021 42

Theorem 8

Foranye >0 and u < e

E[(Z-p?] _E[Z]-2uE[Z] +4°
(e — n)? (e —n)?
With Z=E,[1(h(X) # Y)] and E2[-] as a shorthand for Ej, n~pl],

P(Z>¢) <

]
E [(Z— )] = Ep[(Bo[(L(h(X) # ¥) — w)])?]
= ED[ 2 [(L(h(X) # Y) = ) (L(H(X) # Y) = )]
[ p[(L(h(X) # Y) = w)(L(H(X) # Y) = )]
= Ep[Lu(h K]
N

expected tandem loss with p-offset

Tandem loss with p-offset (u-tandem loss)

£u(h(X), K (X), ¥) = (L(A(X) # ¥) = ) (L(H(X) £ Y) = )
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Theorem 8

In multiclass classification, if u < 0.5,

LMV,) < (0.5 — )2

B2 [L(h, )] .

06-12-2021
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Theorem 8

In multiclass classification, if u < 0.5,

EyalL, (b, )]

L(MVP) < (0'5 _ N)Q

p-tandem loss

£u(B(X), H(X), Y) = (L(h(X) # ¥) = p)(L(H(X) £ Y) — )

44
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Theorem 8

In multiclass classification, if u < 0.5,

E[L,(h, i

p-tandem loss

Lu(h(X), B (X), Y) = (L(h(X) # Y) — p)(1 ( H(X)#Y) =)
e {(1—p? —p(l - p),pn?}



.? UNIVERSITY OF COPENHAGEN 06-12-2021 46

Theorem 8

In multiclass classification, if u < 0.5,

E oL, (h, H
L(MV,) < E)OF;—( u)2)]'

p-tandem loss

Cu(h(X), K (X), Y) = (ﬂ(h(X) 75 Y) - )( ( H(X)#Y) — 1)
e{(1- 2 p(l—p),p }

Range K, = max {1l — p,1 — 2u}.
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Contribution (2): PAC-Bayes-Bennett Inequality
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Contribution (2): PAC-Bayes-Bennett Inequality

Theorem (PAC-Bayes-Bernstein [Seldin et al., 2012] (Informal))
Assume |{(-,-)| < b and the corresponding variance is finite. Then for
v €(0,1/b],

KL(p[|7) +In

B [L(R)] < BolL(h,S)] + (e~ 2By [T()] + =

Theorem (PAC-Bayes-Bennett (Informal))

Assume ((-,-) < b and the corresponding variance is finite. Let
¢(x) = € —x—1. Then for~v > 0,

~ ~ ™ l
E,[L(h)] < E,[L(h,S)] + gbiZf)EpW(h)]*%‘




.? UNIVERSITY OF COPENHAGEN 06-12-2021 49

Contribution (2): PAC-Bayes-Bennett Inequality

Theorem (PAC-Bayes-Bernstein [Seldin et al., 2012] (Informal))
Assume |{(-,-)| < b and the corresponding variance is finite. Then for
v €(0,1/b],

KL(p[|7) +In

B [L(R)] < BolL(h,S)] + (e~ 2By [T()] + =

Theorem (PAC-Bayes-Bennett (Informal))

Assume ((-,-) < b and the corresponding variance is finite. Let
¢(x) = € —x—1. Then for~v > 0,

10 < By lL(h, 9) + 00, sy 4 HAD G,

Note: 0.5 < 232 < (e—2)~0.72
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Bound the Variance [Tolstikhin and Seldin, 2013]

n

Assume (-, -) has range c. For any \ € (0, M)

E,[V(h)] < E,[V (1) +C2(K'—(p|!7r)+ln%)'

N
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From Oracle to Empirical

Parametrized Chebyshev-Cantelli oracle
If p<0.5,
Ep2[Lu(h, b))
(0.5 —p)?
Chebyshev-Cantelli bound with PAC-Bayes-Bennett loss estimate

L(MV,) <

Theorem (Informal)

1 ] ) 2KL(p||7) + In 255>
L(MV,) < 0512 (Ep2[LlL(hv H,S)+ ~n
L 900 = p?) (Bl 5] | K (2KHIm +in 250 )
4 _An ’
RCETLI  — m (1= 5225)

ky, kx: # of parameter grid of v and \.
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Experiment

Restrict i € [0,0.5). Test error of optimized majority vote over
uniformly weighted baseline for the first order bound, the TND bound
and the two new bounds, CCTND and CCPBB. The lower the better.

. Bnay Multiclass .
LS I — L
o T Tt ) A T
o~

=06} | i 1

)

Zos5) 1 I |

* s * *
‘DDpFO |:Il:lpTND |:Il:lpCCTI\'D pCCPBB ‘

0.3} T | ]
a3

(MV-, S

S % 8w, O B0 8 B & Co Ay B
L, 8. . e Yo, Ty b, %, e, o, %o, %, Uy, Y7, o
d, Uy U X, Yy O %, s Yy G s OO “%
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z% § &4 v 23 © 5



.e UNIVERSITY OF COPENHAGEN 06-12-2021 53

Summary: Whats New?
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Summary: Whats New?

® Parametric form of Chebyshev-Cantelli inequality

® No variance in the denominator and as tight as original bound
® Allows efficient minimization and empirical estimation
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Summary: Whats New?
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® New second order oracle bounds for weighted majority vote
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Summary: Whats New?

® Parametric form of Chebyshev-Cantelli inequality

® No variance in the denominator and as tight as original bound
® Allows efficient minimization and empirical estimation

® New second order oracle bounds for weighted majority vote
® Resulting empirical bounds are amenable to efficient minimization
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Summary: Whats New?

® Parametric form of Chebyshev-Cantelli inequality

® No variance in the denominator and as tight as original bound
® Allows efficient minimization and empirical estimation

® New second order oracle bounds for weighted majority vote
® Resulting empirical bounds are amenable to efficient minimization

e PAC-Bayes-Bennett inequality
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Summary: Whats New?

® Parametric form of Chebyshev-Cantelli inequality

® No variance in the denominator and as tight as original bound
® Allows efficient minimization and empirical estimation

® New second order oracle bounds for weighted majority vote
® Resulting empirical bounds are amenable to efficient minimization
e PAC-Bayes-Bennett inequality

® Improves on the PAC-Bayes-Bernstein inequality by Seldin et al.
[2012]
® Can be used for bounding the tandem loss with an offset



