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Weighted Majority Vote

• Central technique for combining predictions of multiple classifiers
(boosting, bagging, etc.)

• Wins most ML competitions.

Prediction rule
ρ-weighted majority vote MVρ predicts

MVρ(X) = argmax
y∈Y

Eρ[1(h(X) = y)].

Key Power
Cancellation of errors effect: Errors average out when
• errors of individual classifiers are independent
• individual classifiers have expected error less than 0.5
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Standard Analysis
If a majority vote makes an error, at least a ρ-weighted half of the
classifiers have made an error:

L(MVρ) ≤ P(Eρ[1(h(X) ̸= Y)] ≥ 0.5)

First Order Oracle Bound
By Markov’s inequality P(Z ≥ ε) ≤ E [Z] /ε:

L(MVρ) ≤ 2ED[Eρ[1(h(X) ̸= Y)]] = 2Eρ[L(h)]︸ ︷︷ ︸
Gibbs loss

Issues
• Ignores correlation of predictions (main power of MV)
• Optimization of corresponding PAC-Bayes bound degrades the

test error [Lorenzen et al., 2019]
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C-bounds [Lacasse et al., 2007, Germain et al., 2015,
Laviolette et al., 2017]

P(Z > 0.5) = P(Z − E [Z] ≥ 0.5− E [Z])
by Chebyshev-Cantelli inequality, if E [Z] < 0.5,

≤ V[Z]
(0.5− E [Z])2 + V[Z]

=
E
[
Z2
]
− E [Z]2

0.25− E [Z] + E [Z2]

since V[Z] = E
[
Z2
]
− E [Z]2.

Issues
• E

[
Z2
]

and E [Z] in the denominator make empirical estimation
and optimization of the bound difficult

• Empirically weaker than the first order bound [Lorenzen et al.,
2019]
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Tandem Bound (TND)[Masegosa et al., 2020]
Let Z = Eρ[1(h(X) ̸= Y)]. By second order Markov’s inequality
P(Z ≥ ε) ≤ E

[
Z2
]
/ε2:

L(MVρ) ≤ 4ED[Eρ[1(h(X) ̸= Y)]2]
= 4 Eρ2 [L(h, h′)]︸ ︷︷ ︸

expected tandem loss

.

Eρ2 [·] = Eh∼ρ,h′∼ρ[·]
L(h, h′) = ED[ℓ(h, h′)]
Tandem Loss

ℓ(h, h′) := 1
(
h(X) ̸= Y ∧ h′(X) ̸= Y

)
counts an error only if h and h′ both err on a sample (X,Y).
Issues
• Not as tight as the C-bound
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State-of-the-art Summary
First order bound
• Ignores correlations
• Deteriorates test loss

C-bound
• Difficult to estimate and optimize due to V [Z] in denominator

Tandem bound
• Accounts for correlations
• Easy to optimize
• Not as tight as C-bound

Our contribution
• New form of Chebyshev-Cantelli inequality that has tightness of

C-bound and is easier to optimization
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Our Contribution (1)
New form of the Chebyshev-Cantelli inequality, which is convenient for
optimization.

Theorem (Parametrized Chebyshev-Cantelli inequality)
For any ε > 0 and µ < ε

P(Z ≥ ε) ≤
E
[
(Z − µ)2

]
(ε− µ)2

.

Proof.

P(Z ≥ ε)

= P(Z − µ ≥ ε− µ) ≤ P
(
(Z − µ)2 ≥ (ε− µ)2

)
≤

E
[
(Z − µ)2

]
(ε− µ)2
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Relation to Existing Second Order Bounds
For any ε > 0 and µ < ε

P(Z ≥ ε) ≤
E
[
(Z − µ)2

]
(ε− µ)2

=
E
[
Z2
]
− 2µE [Z] + µ2

(ε− µ)2
.

• Bound is minimized by µ∗ = E [Z]− V[Z]
ε−E[Z]

• Substitution of µ∗ into the bound recovers Chebyshev-Cantelli
inequality

• Taking µ = 0 recovers second order Markov’s inequality
Advantages
• Easy to estimate and optimize, as the second order Markov
• As tight as the Chebyshev-Cantelli inequality
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Theorem 7
For any ε > 0 and µ < ε

P(Z ≥ ε) ≤
E
[
(Z − µ)2

]
(ε− µ)2

=
E
[
Z2
]
− 2µE [Z] + µ2

(ε− µ)2
.

Let Z = Eρ[1(h(X) ̸= Y)].
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Theorem 7
In multiclass classification, if µ < 0.5,

L(MVρ) ≤
Eρ2 [L(h, h′)]− 2µEρ[L(h)] + µ2

(0.5− µ)2
.
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From Oracle to Empirical
In multiclass classification, if µ < 0.5,

L(MVρ) ≤
Eρ2 [L(h, h′)]− 2µEρ[L(h)] + µ2

(0.5− µ)2
.

To bound Eρ2 [L(h, h′)] and Eρ[L(h)] by their empirical counterparts,
we use

PAC-Bayes-kl inequality [Seeger, 2002]:

kl
(
Eρ[L̂(h,S)]

∥∥∥Eρ [L(h)]
)
≤ KL(ρ∥π) + ln(2

√
n/δ)

n
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Eρ2 [L(h, h′)]− 2µEρ[L(h)] + µ2

(0.5− µ)2
.

To bound Eρ2 [L(h, h′)] and Eρ[L(h)] by their empirical counterparts,
we use
PAC-Bayes-λ inequality [Thiemann et al., 2016]:

Eρ [L(h)] ≤
Eρ[L̂(h,S)]

1− λ
2

+
KL(ρ∥π) + ln(2

√
n/δ)

λ
(
1− λ

2

)
n

Eρ [L(h)] ≥
(
1− γ

2

)
Eρ[L̂(h,S)]−

KL(ρ∥π) + ln(2
√

n/δ)
γn

⇒ Chebyshev-Cantelli bound with TND empirical loss estimate
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Theorem 8
For any ε > 0 and µ < ε

P(Z ≥ ε) ≤
E
[
(Z − µ)2

]
(ε− µ)2

=
E
[
Z2
]
− 2µE [Z] + µ2

(ε− µ)2
.

With Z = Eρ[1(h(X) ̸= Y)] and Eρ2 [·] as a shorthand for Eh∼ρ,h′∼ρ[·],

E
[
(Z − µ)2

]
= ED[(Eρ[(1(h(X) ̸= Y)− µ)])2]

= ED[Eρ2 [(1(h(X) ̸= Y)− µ)(1
(
h′(X) ̸= Y

)
− µ)]]

= Eρ2 [ED[(1(h(X) ̸= Y)− µ)(1
(
h′(X) ̸= Y

)
− µ)]]

= Eρ2 [Lµ(h, h′)]︸ ︷︷ ︸
expected tandem loss with µ-offset

.

Tandem loss with µ-offset (µ-tandem loss)

ℓµ(h(X), h′(X),Y) = (1(h(X) ̸= Y)− µ)(1
(
h′(X) ≠ Y

)
− µ)
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(ε− µ)2
.

With Z = Eρ[1(h(X) ̸= Y)] and Eρ2 [·] as a shorthand for Eh∼ρ,h′∼ρ[·],

E
[
(Z − µ)2

]
= ED[(Eρ[(1(h(X) ̸= Y)− µ)])2]

= ED[Eρ2 [(1(h(X) ̸= Y)− µ)(1
(
h′(X) ̸= Y

)
− µ)]]

= Eρ2 [ED[(1(h(X) ̸= Y)− µ)(1
(
h′(X) ̸= Y

)
− µ)]]

= Eρ2 [Lµ(h, h′)]︸ ︷︷ ︸
expected tandem loss with µ-offset

.

Tandem loss with µ-offset (µ-tandem loss)

ℓµ(h(X), h′(X),Y) = (1(h(X) ̸= Y)− µ)(1
(
h′(X) ≠ Y

)
− µ)
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Theorem 8
In multiclass classification, if µ < 0.5,

L(MVρ) ≤
Eρ2 [Lµ(h, h′)]
(0.5− µ)2

.

µ-tandem loss

ℓµ(h(X), h′(X),Y) = (1(h(X) ̸= Y)− µ)(1
(
h′(X) ≠ Y

)
− µ)

∈
{
(1− µ)2,−µ(1− µ), µ2

}
Range Kµ = max {1− µ, 1− 2µ}.
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)
− µ)

∈
{
(1− µ)2,−µ(1− µ), µ2

}
Range Kµ = max {1− µ, 1− 2µ}.

UNIVERSITY OF COPENHAGEN 06–12–2021 46



Contribution (2): PAC-Bayes-Bennett Inequality

Theorem (PAC-Bayes-Bernstein [Seldin et al., 2012] (Informal))
Assume |ℓ̃(·, ·)| ≤ b and the corresponding variance is finite. Then for
γ ∈ (0, 1/b],

Eρ[L̃(h)] ≤ Eρ[
ˆ̃L(h,S)] + (e − 2)γEρ[Ṽ(h)] +

KL(ρ∥π) + ln 1
δ

γn .

Theorem (PAC-Bayes-Bennett (Informal))
Assume ℓ̃(·, ·) ≤ b and the corresponding variance is finite. Let
ϕ(x) = ex − x − 1. Then for γ > 0,

Eρ[L̃(h)] ≤ Eρ[
ˆ̃L(h,S)] + ϕ(γb)

γb2 Eρ[Ṽ(h)] +
KL(ρ∥π) + ln 1

δ

γn .

Note: 0.5 ≤ ϕ(γb)
γ2b2 ≤ (e − 2) ≈ 0.72
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Bound the Variance [Tolstikhin and Seldin, 2013]
Assume ℓ̃(·, ·) has range c. For any λ ∈

(
0, 2(n−1)

n

)
,

Eρ[Ṽ(h)] ≤
Eρ[

ˆ̃V(h)]
1− λn

2(n−1)

+
c2
(
KL(ρ∥π) + ln 1

δ

)
nλ
(
1− λn

2(n−1)

) .
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From Oracle to Empirical
Parametrized Chebyshev-Cantelli oracle
If µ < 0.5,

L(MVρ) ≤
Eρ2 [Lµ(h, h′)]

(0.5− µ)2
.

Chebyshev-Cantelli bound with PAC-Bayes-Bennett loss estimate

Theorem (Informal)

L(MVρ) ≤
1

(0.5− µ)2

(
Eρ2 [L̂µ(h, h′,S)] +

2KL(ρ∥π) + ln 2kγkλ

δ

γn

+
ϕ(γ(1− µ)2)

γ(1− µ)4

Eρ2 [V̂µ(h, h′,S)]
1− λn

2(n−1)

+
K2
µ

(
2KL(ρ∥π) + ln 2kγkλ

δ

)
nλ
(
1− λn

2(n−1)

)
).

kγ , kλ: # of parameter grid of γ and λ.
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Experiment
Restrict µ ∈ [0, 0.5). Test error of optimized majority vote over
uniformly weighted baseline for the first order bound, the TND bound
and the two new bounds, CCTND and CCPBB. The lower the better.
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Summary: Whats New?

• Parametric form of Chebyshev-Cantelli inequality
• No variance in the denominator and as tight as original bound
• Allows efficient minimization and empirical estimation

• New second order oracle bounds for weighted majority vote
• Resulting empirical bounds are amenable to efficient minimization

• PAC-Bayes-Bennett inequality
• Improves on the PAC-Bayes-Bernstein inequality by Seldin et al.

[2012]
• Can be used for bounding the tandem loss with an offset
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