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e Ensembles of NNs are recently getting a lot of attention.
e Provide better uncertainty quantification.
e More robust to Qut-Distribution-Data.
e Key properties in many real-world applications.

e Ongoing debate of why ensembles of NNs work so well:
e Ensemble’s diversity is widely used to justify ensemble performance.
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e Theoretically, diversity is not a well-established concept:

e Different names: ambiguity, disagreement, etc.
e Many different proposals to define diversity.
e No theoretical analysis covering different different ensembles.



Our Contributions

e We built on previously published results:
e (Krogh and Vedelsby, 1994): Ensemble of regression models.
e (Masegosa, 2020): Bayesian model averaging.
e (Masegosa et al., 2020): Weighted Majority Vote.



Our Contributions

e We built on previously published results:

e (Krogh and Vedelsby, 1994): Ensemble of regression models.
e (Masegosa, 2020): Bayesian model averaging.
e (Masegosa et al., 2020): Weighted Majority Vote.

e We introduce a theoretical framework to answer these questions:

1) How to measure the diversity of an ensemble?.
2) How is diversity related to the ensemble’s generalization performance?.
3) How can diversity be promoted by ensemble learning algorithms?.

e We derive a common framework for different types of ensembles.



Previous Knowledge



Basics on NNs ensembles

An ensemble trained with D = {(x1,y1),...,(Xn, y¥n)} is the combination
of different predictors.
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Different Ensemble Methods

Regression Ensemble: Multiple regression models.

o Weighted Model Averaging: MA,(x) = Eg~,[he(x)].
e Squared loss :
Lsg(8) = Eu[(he(x) = y)’]  Lsa(p) = Eu[(MA,(x) - y)?]

Probabilistic Ensemble: Multiple probabilistic classification models.

o Weighted Model Averaging

e Cross-entropy loss
Majority Vote Ensemble: Multiple classification models.

o Weighted Majority Vote

e Zero-one loss
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where « = 4 for the 0/1-loss, otherwise, o = 1.

The diversity term depends on the considered loss function:
D(p) = E, |V, (f(y,x;0)) |-

e Ensemble’s performance depends on both individual models’
performance and diversity.
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How to measure diversity?

Regression Ensemble: Multiple regression models.

Dia(p) = Eu[Vy(ho(x))]

Probabilistic Ensemble: Multiple probabilistic classification models.

bt = B [i, (220

Majority Vote Ensemble: Multiple classification models.

Do) = B[V, (1lhe(x) # )]



Is D(p) a diversity measure?

A General Measure of Diversity:
D(p) = By |V, (F(y,x:0)) |-
Lemma
i) D(p) =0
ii) If all individual models provide the same predictions, then D(p) = 0.
iii) 0 <D(p) <E,[L(6)].

iv) D(p) is invariant to reparametrizations.
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How to measure diversity?

A General Measure of Diversity:

D(p) = E, |V, (F(y,x:6)) |

Theorem
The diversity term D(p) can be written as

D(p) = Virp ((, x:8)) — Epip [ Covu(F(y, x:6), £, x:8'))|
where Cov,(-,-) is the co-variance between two models.

e First term helps to explain why randomized models improve

ensemble performance.
e Second term helps to explain why independent and anti-correlated

models improve ensemble performance. 9
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Diversity and Generalization

Theorem 1
General Upper-bound for all the ensembles considered in this work:

Lp) < a ((EL@O)] - D(p) )
~— ~——— ~—
Ensemble’s Individual Models’ Ensemble’s
Expected Loss Expected Loss Diversity

where a = 4 for the 0/1-loss, otherwise, o = 1.

e Ensemble’s performance depends on both individual models’

performance and diversity among them.
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How is Diversity Related to the Performance of an Ensemble?

A General Measure of Diversity:
D(p) = Ey [Vp (Fly, x; 9))}-

Question: How much do we gain by ensembling a set of models wrt
randomly choosing them?

Corollary

Under these settings, we have that

D(p) < E,[L(6)] - ~1(p)

Ensemble’s Gap

Answer: Larger diversity induces larger gains.
11
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How is Diversity Related to the Performance of an Ensemble?

A General Measure of Diversity:
D(p) = B, [V, (F(y. x:6)) .

Question: When is an ensemble better that best individual model?

Corollary

1 * *
EL(6)] - -L(6") < D(p) — Lip) < L)
Ensemble’s Ensemble’s Single Model’s

Single Model's Diversity Expected Loss  Expected Loss
Error Gap

Answer: If the diversity of the ensemble is large enough, then an
ensemble outperforms the best single model.

12



How to Exploit Diversity to Learn
Ensembles?




Diversity and Generalization

Theorem 1

General Upper-bound for all the ensembles considered in this work:

Lp) < o (ElL©)] — D())
~— ———— ~——
Ensemble’s Individual Models’ Ensemble's
Expected Loss Expected Loss Diversity

where oz = 4 for the 0/1-loss, otherwise, v = 1.

e This inequality depends on the data generating distribution.

13



How to Exploit Diversity to Learn Ensembles?

A PAC-Bayesian Bound

For distribution 7(0) independent of D, with probability at least 1 — §
over draws of training data D ~ v"(y, x) (i.e., i.i.d.), for all A > 0, for
all distribution p over ®, simultaneously,

L(p) < o (Ep[i(e, DY — D(p, D) + 2KElelm) |, elvim A, "?5))
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Ensemble’s Averaged Ensemble’s .
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e Find the p minimizing this PAC-Bayesian Bound.
e We move to a continuous hypothesis space.
14



How to Exploit Diversity to Learn Ensembles?

Ensemble Learning algorithm as a mixture model

p(6164,.. .0k, 0> N(8; 0y, 0°1).

\MX
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How to Exploit Diversity to Learn Ensembles?

Ensemble Learning algorithm as a mixture model

p(9|017-"70K7 0 01(70 l

\MX

Learning Objective (P2B-Ensemble)

Jmin E,[L(6,D)] — B(p,D) - 2E,[In7(0)]
Lo 0K N e N

An
Averaged Ensemble’s .
Empirical Loss Empirical Diversity Regularization
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Empirical Validation




Empirical validation: Experimental Settings

Tasks

e Regression Task: Wine-Quality dataset.
e Classification Task: Cifarl0 and Cifar100 data sets.
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Empirical validation: Experimental Settings

Tasks

e Regression Task: Wine-Quality dataset.
e Classification Task: Cifarl0 and Cifar100 data sets.

Models

e Regression Task: MLP with 50 hidden units.

e Classification Task: LeNet5 and ResNet20 convolutional networks.
Learning Algorithms

e P2B-Ensemble: K models jointly learned promoting diversity.

e Ensemble: K models independently learned.

16



Ensemble Learning

(Manish Kumar, 2018)

e Ensemble composed by K different local minima.

17



Empirical Validation
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e Higher diversity correlates with higher gains by ensembling.
e Standard ensemble methods implicitly promote diversity.

e P2B-Ensemble finds ensembles with higher diversity.
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Empirical validation

EplLce(0)] = Lee(p)
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Empirical validation
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e Explicitly promoting diversity (ie. P2B-Ensemble) gives rise to better
ensembles.
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e Explicitly promoting diversity (ie. P2B-Ensemble) gives rise to better
ensembles.

e But not always...
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Empirical validation

CIFAR-10 ResNet20
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e P2B-Ensemble is not able to learn better ensembles.
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Empirical validation

CIFAR-10 ResNet20 CIFAR-10 ResNet20
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e P2B-Ensemble is not able to learn better ensembles.
o Why?

e Because big neural networks works in the interpolation regime.
21
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How to Exploit Diversity to Learn Ensembles?

Learning Objective

A A 2E,[In7(6
min E,[L(6,0)] — D(p, D) — 2elin(@)]
01,0 e s —— An
Averaged Ensemble’s e
Empirical Loss Empirical Diversity Regularization

Inequality
0 < D(p, D) <E,[L(6, D)]

In the interpolation regime

E,[L(8,D)] ~ 0 = D(p, D) ~ 0

e The empirical diversity does not provide any signal to the gradient.

22



Conclusions and Future Work

Conclusions

e We can formally speak about ensemble’s diversity.
e Applies to very different ensemble methods.
e Useful to understand and derive learning algorithms.
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Conclusions and Future Work

Conclusions

e We can formally speak about ensemble’s diversity.
e Applies to very different ensemble methods.
e Useful to understand and derive learning algorithms.

Limitations

e Diversity's linear dependency: not accurate in all cases (Germain et
al. 2015, Wu et al. 2021)

e Only second-order interactions.

e Learning in the interpolation-regime.

Future Works

e Promote diversity using a external (non-labelled) dataset.
23



Questions?
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Measuring Diversity

e For regression ensembles, (Krogh and Vedelsby, 1994) showed that:
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Measuring Diversity

e For regression ensembles, (Krogh and Vedelsby, 1994) showed that:

2 2
Lsq(p) =Eo[E,[(y — ho(x))7]] — Eu[E,[(he(x) —E,[he(x)])7]]
——
Ensemble’s Individual Models’ Variance among
Expected Loss xpected Loss individual models

e Strong ensembles require strong and diverse individual models:
small individual error and high variance.

e Existing literature only contains ad-hoc decompositions for other kind
of ensembles, but there is not a general decomposition.

24



Empirical validation

Theorem 1
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