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Introduction

PAC-Bayes theory provides high-probability generalization bounds for randomized learning
algorithms.

A randomized learning algorithms defines probability measure ρ ∈ M1(Θ) over the set of
candidate models Θ.

Notation:
Data, D = {xi}ni=1, is i.i.d. generated from an unknown distribution, ν, with support on X
We have a loss function ℓ : Θ×X → R+

Population risk of θ ∈ Θ is defined as L(θ) := Eν [ℓ(θ,X)]

Empirical risk of θ ∈ Θ is defined as L̂(θ, D) := 1
n

∑n
i=1 ℓ(θ,xi)

Standard PAC-Bayes bounds for bounded losses (McAllester, 2003):

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

√
KL(ρ|π) + log 2

√
n

δ

2n
,

The inequality holds simultaneously for every ρ ∈ M1(Θ) with probability no less than 1− δ
over the choice of D ∼ νn.

We can minimize the bound with respect to ρ to obtain novel learning algorithms.
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Introduction

Unbounded losses are widely used in machine learning (e.g., cross-entropy, MSE).

PAC-Bayes bounds for unbounded losses involve extra difficulties.

Most existing PAC-Bayes bounds for unbounded losses are derived from next result:

PAC-Bayes (oracle) bound for unbounded losses

For any δ ∈ (0, 1) and any λ > 0, with probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

1

λ

KL(ρ|π) + log
fπ,ν(λ)

δ

n

 ,
where fπ,ν(λ) := Eπ Eνn

[
eλn (L(θ)−L̂(D,θ))

]
.

[Alquier, P., Ridgway, J., & Chopin, N. (2016). On the properties of variational approximations of Gibbs posteriors. Journal of

Machine Learning Research, 17(236), 1-41.]

Main difficulties:

The exponential moment term fπ,ν(λ) has to be bounded using extra assumptions on the
loss (e.g., sub-Gaussian assumption).

The free parameter λ > 0 cannot be exactly optimized (discrete grid + union bounds).
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Introduction

Contributions

A novel PAC-Bayes oracle bound for unbounded losses
Extends classic Cramér-Chernoff bounds to the PAC-Bayesian setup.

Provides a general framework to obtain empirical bounds where:
The free parameter λ is exactly optimized without resorting to union-bound
approaches.

The exponential moment term is averaged by the posterior, resulting in more
informative generalization bounds.

Can be minimized to obtain novel posteriors.

We illustrate the framework in several cases: generalized sub-Gaussian losses, L2
regularization, and input-gradient regularization.
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Main Theorem

Definition (Expected Cramér transform)

We define our comparator function for any ρ ∈ M1(Θ) as the expected Cramér trasform:

Λ⋆
ρ(a) := sup

λ∈[0,b)
{λa− E

ρ
[Λθ(λ)]}, a ∈ R . (1)

Where Λθ(λ) := logEν

[
eλ (L(θ)−ℓ(x,θ))

]
is the Cumulant Generating Function (CGF) of the

loss.

Theorem (PAC-Bayes-Chernoff bound)

For any δ ∈ (0, 1), with probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] + (Λ⋆

ρ)
−1

(
KL(ρ|π) + log n

δ

n− 1

)
,

simultaneously for every ρ ∈ M1(Θ).

Equivalently:

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

KL(ρ|π) + log n
δ

λ(n− 1)
+

Eρ[Λθ(λ)]

λ

simultaneously for every ρ ∈ M1(Θ) and λ ∈ (0, b).
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Preliminaries: an auxiliary lemma

Lemma
For any θ ∈ Θ and c ≥ 0, we have

PD∼νn

(
nΛ⋆

θ(L(θ)− L̂(D,θ)) ≥ c
)
≤ PX∼exp (1)

(
X ≥ c

)
.

Proof.
Careful rewriting of the Cramér-Chernoff bound after changes of variables.

Using the fact that for any random variable Z with support Ω ⊆ R+ its expectation can be written
as

E[Z] =
∫
Ω
P (Z ≥ z)dz , (2)

the previous lemma will allow us to bound the exponential term Eνn

(
e
mΛ⋆

θ
(L(θ)−L̂(D,θ))

)
in

our main theorem.
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Main Theorem, proof sketch

Let m < n. First, by Jensen,

mΛ⋆
ρ

(
E
ρ
L(θ)− E

ρ
L̂(D,θ)

)
≤ mE

ρ

[
Λ⋆
θ(L(θ)− L̂(D,θ))

]
.
Apply Donsker-Varadhan’s lemma on the right side to obtain

mΛ⋆
ρ

(
E
ρ
L(θ)− E

ρ
L̂(D,θ)

)
≤ KL(ρ|π) + logE

π

(
e
mΛ⋆

θ
(L(θ)−L̂(D,θ))

)
After Markov’s inequality + Fubini, with probability at least 1− δ,

mΛ⋆
ρ

(
E
ρ
L(θ)− E

ρ
L̂(D,θ)

)
≤ KL(ρ|π) + log

1

δ
+ logE

π
E
νn

(
e
mΛ⋆

θ
(L(θ)−L̂(D,θ))

)
.

Using the auxiliary lemma we obtain

E
νn

(
e
mΛ⋆

θ
(L(θ)−L̂(D,θ))

)
≤

n

n−m
.

Taking m = n− 1 and applying
(
Λ⋆
ρ

)−1 in both sides concludes the proof.
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Remarks

Let us unwrap our bound:

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] + inf

λ∈[0,b)

{
KL(ρ|π) + log n

δ

λ(n− 1)
+

Eρ[Λθ(λ)]

λ

}
simultaneously for every ρ ∈ M1(Θ).

Observations:
Parameter-free bound without union-bounds at a logn cost.

Generalization of ρ ∈ M1(Θ) depends on a three-way trade-off.

Minimize the empirical Gibbs loss Eρ[L̂(D,θ)].

Minimize the KL term KL(ρ|π).

[Novel term] Minimize the CGF term Eρ[Λθ(λ)]

Directly related to regularization (Masegosa&Ortega, 2023).

Relation to previous bounds:
If the loss is the 0-1 loss, we recover Langford-Seeger’s bound (Seeger, 2002).
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Relation to previous bounds: Bounded CGFs

Bounded CGF assumptions is the standard approach to derived PAC-Bayes bounds for
unbounded loss:

If loss is σ-sub-gaussian,

Λθ(λ) ≤
1

2
σ2λ2 ∀θ ∈ Θ

We can recover previous bounds (Hellstrom & Durisi, 2021)

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

√
2σ2

KL(ρ|π) + log n
δ

n− 1
,

simultaneously for every ρ ∈ M1(Θ).

Uniformly bound Λθ(λ) ≤ ψ(λ) for every θ ∈ Θ, necessarily discards information about the
statistical properties of individual models.

There are models with very different CGF (Masegosa&Ortega, 2023).
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Beyond bounded CGFs

Definition (Model-dependent bounded CGF)

A loss function ℓ has model-dependent bounded CGF if for each θ ∈ Θ, there is a convex and
continuously differentiable function ψ(θ, λ) such that ψ(θ, 0) = ψ′(θ, 0) = 0 and ∀λ ≥ 0,

Λθ(λ) := logE
ν

[
eλ (L(θ)−ℓ(x,θ))

]
≤ ψ(θ, λ) . (3)

Theorem
Let ℓ be a loss function with model-dependent bounded CGF. Let π ∈ M1(Θ) be any prior
independent of D. Then, for any δ ∈ (0, 1), with probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

KL(ρ|π) + log n
δ

λ(n− 1)
+

Eρ[ψ(θ, λ)]

λ
.

simultaneously for every ρ ∈ M1(Θ) and λ ∈ (0, b).
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Example: sub-Gaussian losses

If the loss function is σ2-sub-Gaussian, we have Λθ(λ) ≤
λσ2

2
for every θ ∈ Θ (Hellström &

Durisi, 2021):

E
ρ
L(θ) ≤ E

ρ
L̂(D,θ) +

√
2σ2

KL(ρ|π) + log n
δ

n− 1
. (4)

Our theorem allows the following, more general assumption: Λθ(λ) ≤
λσ(θ)2

2
for each θ ∈ Θ.

E
ρ
L(θ) ≤ E

ρ
L̂(D,θ) +

√
2E

ρ
[σ(θ)2]

KL(ρ|π) + log n
δ

n− 1
, (5)

Remark:
The proxy variance σ2 in equation (4) is a worst-case constant, hence (5) is more general and
potentially tighter. It also shows that generalization depends on finding models with smaller proxy
variance.

However, we are not limited to using tail assumptions!

11



Example: sub-Gaussian losses

If the loss function is σ2-sub-Gaussian, we have Λθ(λ) ≤
λσ2

2
for every θ ∈ Θ (Hellström &

Durisi, 2021):

E
ρ
L(θ) ≤ E

ρ
L̂(D,θ) +

√
2σ2

KL(ρ|π) + log n
δ

n− 1
. (4)

Our theorem allows the following, more general assumption: Λθ(λ) ≤
λσ(θ)2

2
for each θ ∈ Θ.

E
ρ
L(θ) ≤ E

ρ
L̂(D,θ) +

√
2E

ρ
[σ(θ)2]

KL(ρ|π) + log n
δ

n− 1
, (5)

Remark:
The proxy variance σ2 in equation (4) is a worst-case constant, hence (5) is more general and
potentially tighter. It also shows that generalization depends on finding models with smaller proxy
variance.

However, we are not limited to using tail assumptions!

11



L2 regularization

L2 regularization minimizes an objective function of the form

L̂(D,θ) + k∥θ∥22,

where k > 0 is a trade-off parameter.

If the loss ℓ(x,θ) is M -Lipschitz with respect to θ, as shown in (Masegosa&Ortega, 2023),

Λθ(λ) ≤ 2Mλ2∥θ∥22. (6)

Theorem
If ℓ satisfies the inequality above, then for any δ1 ∈ (0, 1), with probability at least 1− δ1 over
draws D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

√
2M E

ρ

[
∥θ∥22

] KL(ρ|π) + log n
δ1

n− 1
(7)

simultaneously for every ρ ∈ M1(Θ).
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Input-gradient regularization through PAC-Bayes

Input-gradient regularization (Varga et al., 2017) minimizes an objective function of the form

L̂(D,θ) + k
1

n

n∑
i=1

∥∇xℓ(xi,θ)∥22,

where k > 0 is a trade-off parameter. This approach is often used to make models more robust
against disturbances in input data and adversarial attacks (Ross & Doshi-Velez, 2018). With the
proper assumptions, our bounds provide a PAC-Bayesian interpretation.

The connection is provided by the assumption that the underlying distribution satisfies a
log-Sobolev inequality (ChafaÏ, 2004):

Λθ(λ) ≤
M

2
λ2 E

ν
∥∇xℓ(x,θ)∥22 (8)

for every λ > 0 and some M > 0.
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Input-gradient regularization through PAC-Bayes

Theorem (Oracle PAC-Bayes bound for input-gradients)

If ν satisfies the inequality above, then for any δ1 ∈ (0, 1), with probability at least 1− δ1 over
draws D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

√
2M E

ρ

[
E
ν
∥∇xℓ(x,θ)∥22

] KL(ρ|π) + log n
δ1

n− 1
(9)

simultaneously for every ρ ∈ M1(Θ).

We can obtain an empirical bound if we assume that the gradient norms have sub-Gaussian tails.

Theorem (Empirical PAC-Bayes bound for input-gradients)

With the same conditions as above, assume ∥∇xℓ(x,θ)∥22 is σ2-sub-Gaussian for every θ ∈ Θ.
Then for any δ ∈ (0, 1), with probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)]+

√√√√2M

(
1

n

n∑
i=1

E
ρ

[
∥∇xℓ(xi,θ)∥22

]
+
σ2

2

)
KL(ρ|π) + log n

δ

n− 1

+
√
2M

KL(ρ|π) + log n
δ

n− 1
.

simultaneously for every ρ ∈ M1(Θ).
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A PAC-Bayesian interpretation of input-gradient regularization

If we fix λ > 0 and repeat the same procedure —log-Sobolev + sub-Gaussianity of gradients—
starting with the parametric bound

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

KL(ρ|π) + log n
δ

λ(n− 1)
+

Eρ[Λθ(λ)]

λ
,

the subsequent bound can be minimized w.r.t. ρ ∈ M1(Θ), resulting in the optimal posterior:

ρ∗(θ) ∝ π(θ) exp
{
− (n− 1)

(
L̂(D,θ) + k

1

n

n∑
i=1

∥∇xℓ(xi,θ)∥22
)}
,

where k = λM
2

. The optimal posterior concentrates its mass of probability in models minimizing
the term L̂(D,θ) + λM

2
1
n

∑n
i=1 ∥∇xℓ(xi,θ)∥22, which is exactly the minimization objective of

input-gradient regularization with trade-off parameter λM
2

.
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Conclusions

Novel PAC-Bayes Oracle Bound: Introduced a novel PAC-Bayes oracle bound leveraging
the Cramer transform.

Optimization of Free Parameter (λ > 0): Facilitates exact optimization of the free parameter
λ > 0, solving a longstanding issue in PAC-Bayesian methods and allowing for tighter
empirical bounds.

Introduction of Model-Dependent Assumptions: Enables flexible, richer model-dependent
assumptions for bounding the Cumulative Generating Function (CGF).

Applicability Across Diverse Assumptions: Demonstrates the bound’s utility through
assumptions such as generalized sub-Gaussian losses, parameter norm bounds, and
log-Sobolev inequalities, including a novel empirical PAC-Bayes bound.

Thanks for your attention!! :)
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