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Motivations

Generalization bounds that solely depend on the training data are

provably vacuous for overparameterized model classes; unable to

explain generalization.

L(θ) ≤ L̂(D,θ) +O
(√p

n

)
Why current machine learning techniques find overparameterized

interpolators with strong generalization performance is an

open question.
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Contributions

A perfectly tight distribution-dependent PAC-Chernoff bound

for interpolators, even in over-parameterized models.

L(θ) ≤ L̂(D,θ) + Cν,θ

(p
n

)
where ν is the data-generating distribution.

A theoretical framework that explains why some interpolators

generalize well, while others do not, based on a novel

characterization of smoothness.

We explain why regularization, data augmentation, invariant

architectures, and over-parameterization produce smoother

interpolators with superior generalization.
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The Rate Function

Chernoff’s Theorem. For any fixed θ ∈ Θ and a > 0, it satisfies

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−nIθ(a) .

with

Iθ(a) := sup
λ>0

λa−Jθ(λ) and Jθ(λ) := lnEν

[
eλ(L(θ)−ℓ(y ,x ,θ))

]
,

• Cramér’s Theorem: For large n, the bound is tight

• Proposition 3.4: When a is large, the bound is tight.
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Smoother Interpolators Generalize Better

Smoothness: A model θ ∈ Θ is β-smoother than a model θ′ ∈ Θ′

∀a ∈ (0, β] Iθ(a) ≥ Iθ′(a) .

Theorem 4.6. For any ϵ ≥ 0 with h.p. 1− δ, for all θ ∈ Θ,

θ′ ∈ Θ′, simultaneously,

L̂(D,θ) ≤ ϵ and θ is β-smoother than θ′

⇓

L(θ) ≤ L(θ′) + ϵ

5/15



PAC-Chernoff Bound

Theorem 4.1. With h.p. 1− δ, for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ ( 1n ln

kp

δ ) .

with

I−1
θ (s) := inf

λ>0

Jθ(λ) + s

λ
∀s ≥ 0 .
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Tightness

Proposition 4.4. The bound is perfectly tight for interpolators.

L(θ) ≤ L̂(D,θ) + I−1
θ ( 1n ln

kp

δ ) ≤ L(θ) + L̂(D,θ) .
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Optimal Regularization

• The inverse rate is an regularizer towards smoother models.

θ×
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L̂(D,θ) + I−1
θ ( 1n ln

kp

δ )︸ ︷︷ ︸
Regularizer

,

θ⋆
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L(θ) .

• How close is θ×
ϵ from the best possible interpolator θ⋆

ϵ .

• Very close!!

Theorem 6.1 For any ϵ > 0, with h.p. 1− δ over D ∼ νn

|L(θ⋆
ϵ )− L(θ×

ϵ )| ≤ ϵ .

The inverse rate is an optimal regularizer.
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Understanding Existing Regularizers

Many common regularization techniques are approximations to

the optimal regularizer:

• Distance from initialization and ℓ2-norm:

I−1
θ

(
1
n ln

kp

δ

)
≤

√
2Ma ∥θ∥2 ,

• Input-gradient norm:

I−1
θ

(
1
n ln

kp

δ

)
≤

√
1
n ln

kp

δ

√
MEν

[∥∥∇xℓ(y , x ,θ)
∥∥2
2

]
.
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Transformed Input Data

Input data in many machine learning problems undergo

transformations, often due to the measuring process, such as

sensor noise or image distortions.

Transformed input-data makes the expected loss L(θ) higher

and the distribution of L̂(D,θ) with D ∼ νn less concentrated.
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MLP L̂(D0,θ)
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Inception L̂(D0,θ)

Inception L̂(D1,θ)

Inception L̂(D2,θ)

D0 - CIFAR-10’s test set.

D1 - random translations.

D2 - random rotations.
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Invariant Architectures (I/II)

• PAC-Chernoff bounds explain why interpolating with invariant

architecture leads to better generalization performance.

• The L̂(D,θ) of invariant architectures is more concentrated

under transformed inputs.
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Invariant Architectures (II/II)
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Model Train Acc. Test Acc. Test NLL

Inception 100.0% 74.08% 1.00

Inception-Shuffle 100.0% 42.46% 2.45

MLP 99.99% 51.69% 3.29

MLP-Shuffle 99.99% 51.12% 3.29

Initial Inception 10.00% 10.00% 2.30

Initial MLP 10.00% 9.96% 2.30
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Over-parameterization

Modern machine learning models are highly overparametrized.

Previous works have established links between overparametrization

and generalization, but under very limited settings.

The distribution-dependent PAC-Chernoff Bound can be used to

obtain bounds over the number of parameters of interpolators:

Theorem 8.1. For any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high

probability 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then p ≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.

where L⋆ = argminθ L(θ).
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Conclusions and Limitations (I/II)

• Traditional bounds relying solely on training data are unable

to explain generalization of over-parameterized

interpolators.

• Distribution-dependent PAC-Chernoff bounds are a

promising tool able to explain a wide range of learning

techniques.

• Smoother interpolators generalize better.
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Conclusions and Limitations (II/II)

• Connected to a wide range of regularization methods.

• Explain why invariant architectures and

data-augmentation works under transformed input-data.

• Over-parameterization is a neccessary condition for smooth

interpolation.

• Limitation: Assumption of a finite model class. It can be

addressed by using PAC-Bayes Chernoff bounds (Casado et

al. 2024).
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