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Generalization bounds that solely depend on the training data are
provably vacuous for overparameterized model classes; unable to

explain generalization.
L(6) < [(D.6) + O(/%)

Why current machine learning techniques find overparameterized
interpolators with strong generalization performance is an

open question.
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Contributions

A

for interpolators, even in over-parameterized models.
L(6) < L(D,6) + (%)

where v is the data-generating distribution.
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Contributions

A perfectly tight distribution-dependent PAC-Chernoff bound
for interpolators, even in over-parameterized models.

L(6) < L(D,0)+ C,0(2)

where v is the data-generating distribution.

A theoretical framework that explains why some interpolators
generalize well, while others do not, based on a novel
characterization of smoothness.
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Contributions

A perfectly tight distribution-dependent PAC-Chernoff bound
for interpolators, even in over-parameterized models.

L(6) < L(D,0)+ C,0(2)

where v is the data-generating distribution.

A theoretical framework that explains why some interpolators
generalize well, while others do not, based on a novel
characterization of smoothness.

We explain why regularization, data augmentation, invariant
architectures, and over-parameterization produce smoother
interpolators with superior generalization.
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The Rate Function

Chernoff’s Theorem. For any fixed 8 € ® and a > 0, it satisfies
Bor (L(0) —~ 1(D,0) > 3) < e (&)
with

To(a) = sup Aa—Jp() and  Jp() ::|nEy[eA(L(9H<M">),

e Cramér’s Theorem: For large n, the bound is tight

e Proposition 3.4: When a is large, the bound is tight.
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Smoother Interpolators Generalize Better

Smoothness: A model 6 € © is 3-smoother than a model 8’ € @’

Va e (0, ﬂ] I@(a) > ng(a) .

Theorem 4.6. For any ¢ > 0 with h.p. 1 — 9, for all 8 € ©,
0’ € @', simultaneously,

[(D,8) <e and 6 is B-smoother than 6’

L(6) < L(O) + ¢
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PAC-Chernoff Bound

Theorem 4.1. With h.p. 1 — 4, for all @ € ®, simultaneously,
L(8) < L(D,0) + Ty (L In &),

with Jo(n
Igl(s) = inf Jo(A) &5 Vs >0.
A>0
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Proposition 4.4. The bound is for interpolators.

L(8) <L(D,0) +Z, (L In %) < 1(6)+L(D,8).

4
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Optimal Regularization

e The inverse rate is an towards smoother models.

0 = argmin L[(D,0)+Z, (L Ink),
h ——_———

0:L(D,0)<e
Regularizer

07 = argmin L(0).
0:0L(D,0)<e¢

e How close is 8 from the best possible interpolator 6.
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Optimal Regularization

e The inverse rate is an towards smoother models.

€

0 = argmin L[(D,0)+Z, (L Ink),
0:0L(D,0)<e¢ —
Regularizer

07 = argmin L(0).
0:0L(D,0)<e¢

e How close is 8 from the best possible interpolator 6.

e Very close!!
Theorem 6.1 For any ¢ > 0, with h.p. 1 — ¢ over D ~ 1"

1L(87) - L(62)| <.

The inverse rate is an
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Understanding Existing Regularizers

Many common regularization techniques are to
the optimal regularizer:

e Distance from initialization and />-norm:
Ty (5In'5) < vV2Ma [|6]2,

e Input-gradient norm:

(k) < WWEV[HW(y,x,e)Hﬂ -
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Transformed Input Data

Input data in many machine learning problems undergo
transformations, often due to the measuring process, such as

sensor noise or image distortions.

Transformed input-data makes the expected loss L(€) higher
and the distribution of L(D, ) with D ~ v" less concentrated.

MLP £(Dy, 6) ——
MLP L(D,, 6) —
MLP L(Ds, 0) % Dg - CIFAR-10's test set.

Inception L (D, 0) % Dy - random translations.
Inception £(Dy, 8){ HJf=+ D, - random rotations.
Inception ﬁ(Dg, 9) }—m—"“’

0 2 4 6 8
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Invariant Architectures (1/11)

A Typical Convolutional Neural Network (CNN

Output
Convelution Pooling  Convolution Dgnlmg D '
- ﬂm o
&
Kemel ‘
Input image Featured Pooled Featured Pooled Flatten N
maps Featured maps maps  Featuredmaps  layer .

>
Feature Maps Fully connected layer

| |
| Feature Extraction |

[ Classification I, Probabilistic |

e PAC-Chernoff bounds explain why interpolating with invariant
architecture leads to better generalization performance.

e The [(D, 0) of invariant architectures is more concentrated
under transformed inputs.

11/15



Invariant Architectures (11/11)

0.05 Zo(a)
—<&— Inception —A— MLP
0.04 —>— Inception-Shuffle —v— MLP-Shuffle
—<—Initial Inception Initial MLP
0.03
0.02
0.01
0007575 0.1 02 0.3 04 05
Model Train Acc. Test Acc. Test NLL
Inception 100.0% 74.08% 1.00
Inception-Shuffle  100.0% 42.46% 2.45
MLP 99.99% 51.69% 3.29

MLP-Shuffle 99.99% 51.12% 3.29

Initial Inception 10.00% 10.00% 2.30
Initial MLP 10.00% 9.96% 2.30
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Over-parameterization

Modern machine learning models are highly overparametrized.

Previous works have established links between overparametrization

and generalization, but under very limited settings.

The distribution-dependent PAC-Chernoff Bound can be used to
obtain bounds over the number of parameters of

Theorem 8.1. For any € € (0,L*) and any ¢ € (0, 1), with high
probability 1 — § over D ~ v, for all 8 € ®, simultaneously,

nZe(L* —€)+1Ind

if [(D,8)<e th >
[ (D,0) <e then p> T

where L* = arg ming L(0).
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Conclusions and Limitations (1/11)

e Traditional bounds relying solely on training data are
to explain generalization of over-parameterized
interpolators.

e Distribution-dependent are a
promising tool able to explain a wide range of learning
techniques.

° generalize better.
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Conclusions and Limitations (11/11)

e Connected to a wide range of regularization methods.

e Explain why invariant architectures and
data-augmentation works under transformed input-data.

o Over-parameterization is a neccessary condition for smooth
interpolation.

e Limitation: Assumption of a finite model class. It can be
addressed by using PAC-Bayes Chernoff bounds (Casado et
al. 2024).
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