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Abstract
Stochastic discriminative EM (sdEM) is an online-EM-type algorithm for discriminative training of probabilistic

generative models belonging to the natural exponential family. In this work, we introduce and justify this algorithm
as a stochastic natural gradient descent method, i.e. a method which accounts for the information geometry in the
parameter space of the statistical model. We show how this learning algorithm can be used to train probabilistic gen-
erative models by minimizing different discriminative loss functions, such as the negative conditional log-likelihood
and the Hinge loss. The resulting models trained by sdEM are always generative (i.e. they define a joint probability
distribution) and, in consequence, allows to deal with missing data and latent variables in a principled way either
when being learned or when making predictions. The performance of this method is illustrated by several text
classification problems for which a multinomial naive Bayes and a latent Dirichlet allocation based classifier are
learned using different discriminative loss functions, and in a online manner.

1 Introduction

2 Models & Assumptions
Y denotes the random variable (continuous, discrete or vector-value random variable) to be predicted,
X denotes the observable predictive variables and Z the non-observable or hidden variables.
• The generative data model belongs to a natural exponential family

p(y, z, x|θ) ∝ exp(〈s(y, z, x), θ〉 − Al(θ))

where θ ∈ Θ is the natural parameter, s(y, z, x) ∈ S is the vector of sufficient statistics and Al is
the log partition function.

•A conjugate prior distribution
p(θ|α) ∝ exp(〈s(θ), α〉 − Ag(α))

where the sufficient statistics are s(θ) = (θ,−Al(θ)) and the hyperparameter α has two components
(ᾱ, ν). ν is a positive scalar and ᾱ is a vector.

• Transformation from the expectation parameter µ = E[s(y, z, x)|θ] to the natural parameter
θ expressed as is available in closed form. Or, equivalently, the maximum likelihood parameters
associated to a given sufficient statistics can be computed in closed form.

3 The sdEM Algorithm

Learning Settings
A data set D with n observations {(y1, x1), . . . , (yn, xn)} and discriminative loss function `(yi, xi, θ).
Our learning problem consists in minimizing the following objective function:

L(θ) =

n∑
i=1

`(yi, xi, θ)− ln p(θ|α) = E [`(y, x, θ)|π]− 1

n
ln p(θ|α) = E

[
¯̀(y, x, θ)|π

]
where π is the empirical distribution of the data D.

The stochastic updating equation of sdEM
sdEM can be interpreted as a stochastic gradient descent algorithm iterating over the expectation
parameters and guided by the natural gradient in its Riemannian space

µt+1 = µt − ρtI(µt)
−1∂

¯̀(yt, xt, θ(µt))

∂µ
Theorem 1. In a natural exponential family, the natural gradient of a loss function with respect to the
expectation parameters equals the gradient of the loss function with respect to the natural parameters,

I(µ)−1∂
¯̀(y, x, θ(µ))

∂µ
=
∂ ¯̀(y, x, θ)

∂θ

Pseudo-Code Description of sdEM

Require: D is randomly shuffled.
1: µ0 = ᾱ; (initialize according to the prior)
2: θ0 = θ(µ0);
3: t = 0;
4: repeat
5: for i = 1, . . . , n do
6: E-Step: µt+1 = µt − 1

(1+λt)
∂ ¯̀(yi,xi,θt)

∂θ ;

7: Check-Step: µt+1 = Check(µt+1,S);

8: M-Step: θt+1 = θ(µt+1);
9: t = t + 1;

10: end for
11: until convergence
12: return θ(µt);

Recent results in information geometry [25] show that sdEM could also be interpreted as a mirror
descent algorithm or proximal gradient method with a Bregman divergence as a proximitiy measure.

4 Discriminative Loss Functions
Negative conditional log-likelihood (NCLL)

This loss function (which is valid for classification, regression, multi-label, etc.) is defined as follows:

`NCLL(yt, xt, θ) = − ln p(yt|xt, θ) = − ln

∫
p(yt, z, xt|θ)dz + ln

∫
p(y, z, xt|θ)dydz

And its gradient is computed as

∂`NCLL(yt, xt, θ)

∂θ
= −Ez[s(yt, z, xt)|θ] + Eyz[s(y, z, xt)|θ]

The Hinge loss (Hinge) for probabilistic generative models

We build on LeCun et al.’s [21] ideas about energy-based learning for prediction problems. We define
the hinge loss (which is only valid for classification) as follows

`Hinge(yt, xt, θ) = max(0, 1− ln
p(yt, xt|θ)

p(ȳt, xt|θ)
) (1)

where ȳt denotes here too the most offending incorrect answer, ȳt = argmaxy 6=yt p(y, xt|θ).
The gradient of this loss function can be simply computed as follows

∂`Hinge(yt, xt, θ)

∂θ
=


0 if ln

p(yt,xt|θ)
p(ȳt,xt|θ)

> 1

−Ez[s(yt, z, xt)|θ] + Ez[s(ȳt, z, xt)|θ] otherwise

sdEM updating equations for partially observed data

NLL µt+1 = (1− ρt(1 + ν
n))µt + ρt

(
Ez[s(yt, z, xt)|θ(µt)] + 1

nᾱ
)

NCLL µt+1 = (1− ρtνn)µt + ρt

(
Ez[s(yt, z, xt)|θ(µt)]− Eyz[s(y, z, xt)|θ(µt)] + 1

nᾱ
)

Hinge µt+1 = (1− ρtνn)µt + ρt


1
nᾱ if ln

∫
p(yt,z,xt|θ)dz∫
p(ȳt,z,xt|θ)dz

> 1

Ez[s(yt, z, xt)|θ(µt)]

−Ez[s(ȳt, z, xt)|θ(µt)] + 1
nᾱ

otherwise

where ȳt = argmaxy 6=yt
∫
p(y, z, xt|θ)dz

5 Experimental Analysis

Simulated Data
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(a) NCLL Loss (b) Hinge Loss

Discriminative Learning with Multinomial-NB and LDA
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(a) Discriminative Multinomial Naive Bayes (b) Discriminative Online LDA
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