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Abstract
In many modern data analysis problems, the available data is not static, but instead comes in a
streaming fashion. Making inferences based on a data stream is challenging for several reasons.
First of all, it requires continuous model updating and the ability to handle a posterior distribution
conditioned on an unbounded data set. Secondly, the underlying data distribution may drift from
one time step to another, and the classic i.i.d. (or data exchangeability) assumption does not hold
any more. In this paper, we present a Bayesian approach which addresses these issues for general
latent variable models within the conjugate exponential family. Our proposal makes use of a novel
scheme based on hierarchical (non-conjugate) priors to explicitly model temporal changes of the
model parameters, which induces an exponential forgetting mechanism with adaptive forgetting
rates. A variational inference scheme is derived which maintains the computational efficiency of
variational methods over conjugate models. The approach is validated on four different domains
(energy, finance, geolocation, and text) using four real-world data sets.

Keywords: Latent Variable Models, Non-Stationary Data Streams, Concept Drift, Variational
Inference, Power Priors, Exponential Forgetting

1. Introduction

Latent variable models (LVMs) (Bishop, 1998; Blei, 2014) are probabilistic models built to uncover
hidden patterns in a data set. Usually, we are interested in both local patterns, which are specific for
each sample of the data, and global patterns, that are shared among all the samples. These hidden
patterns are modeled by means of a set of local and global random latent (unobserved) variables,
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respectively, and the observed data is assumed to be generated from distributions conditioned on
these latent variables. Figure 1 (a) illustrates this kind of models.

LVMs include popular models like LDA (Blei et al., 2003) models to uncover the hidden topics
in a text corpora, mixture of Gaussian models to discover hidden clusters in data (Bishop, 2006),
probabilistic principal component analysis for revealing a low-dimensional representation of the
data (Tipping and Bishop, 1999), models with hierarchical latent variables to capture drift in data
streams (Borchani et al., 2015; Masegosa et al., 2017a), and so on. Comprehensive descriptions of
these models can be found in, e.g., (Bishop, 2006; Koller and Friedman, 2009; Murphy, 2012).

In recent years, the development of learning methods for LVMs that scale to massive data sets
has received a lot of attention (Hoffman et al., 2013; Masegosa et al., 2017b; Hasenclever et al.,
2017; Minsker et al., 2017). But in many modern machine learning applications, the presence of
massive data sets is not the only issue. Many data sets are only available in a streaming fashion,
where new data samples are continuously arriving. LVMs should be updated accordingly to capture
the distribution and hidden patterns in the current data. However, in many domains the data stream
are non-stationary and may exhibit both gradual and abrupt changes in the underlying generative
process, a situation also known in the literature as concept drift (Gama et al., 2014).

A natural way to deal with these drifts in a data stream is to introduce temporal transition
models for the parameters of the LVM (Blei and Lafferty, 2006; Perrone et al., 2017). The problem
is that these approaches introduce non-conjugate relationships between the global parameters of the
extended temporal model. As happens, for example, in Blei and Lafferty (2006) where the Dirichelet
prior over topics is conditioned to the Dirichlet posterior over topics in the previous time step. In
general, previous attempts to introduce a temporal dynamics on LVMs rely on ad-hoc definitions
of transition models which are specific for every LVM at hand, and, also, ad-hoc developments of
inference schemes able to deal with these complex temporally extended models.

The method presented in this paper is inspired by previous work on Bayesian recursive estima-
tion (Ozkan et al., 2013; Kárnỳ, 2014), power priors (Ibrahim and Chen, 2000), and exponential
forgetting (Honkela and Valpola, 2003). Our approach starts showing how these previously pub-
lished methods are directly related to one another through the concept of maximum entropy transi-
tion models. We also show that this scheme can be used as a general approach to define temporal
transitions between the global parameters of LVMs.

However, these aforementioned methods only work for slowly changing processes, where the
rate of change anticipated by the model needs to be controlled by a quantity that must be set man-
ually. The solution proposed in this paper, on the other hand, can accommodate both gradual and
abrupt concept drifts by explicitly modeling the rate of change of the data stream as an unobserved
mechanism using a fully Bayesian approach. A posterior distribution over the rate of change is also
provided at every time step, revealing to the user hidden information about the pattern of change in
the data stream.

With the explicit modeling of the rate of change, the resulting model class will (generally)
not be part of the conjugate exponential family. We then develop an approximate variational in-
ference scheme, based on a novel lower-bound of the data log-likelihood function, which also
ensures the computational efficiency required by high-velocity data stream settings. The appro-
priateness of the approach is investigated through experiments using both synthetic and real-life
data (covering energy, finance, geolocation, and text), showing promising results. The proposed
method is released as part of an open-source toolbox for scalable probabilistic machine learning
(http://www.amidsttoolbox.com) (Masegosa et al., 2017c).
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2. Preliminaries

2.1 The Probabilistic Model

We shall initially focus on probabilistic models with the structure shown in Figure 1 (a), which is
the standard structure of a latent variable model (LVM) (Bishop, 1998; Blei, 2014). This model
includes the observed data x = x1:N , global hidden variables (or parameters) β = β1:M , a set of
local hidden variables z = z1:N , and a vector of fixed (hyper) parameters denoted by α. Notice
how the dynamics of the process is not included in the model of Figure 1 (a); the model will be set
in the context of data streams in Section 6, where we extend it to incorporate explicit dynamics over
the (global) parameters to capture concept drifts in the data stream.

The joint distribution factorizes into a product of local terms and a global term,

p(x, z,β|α) = p(β|α)
N∏
n=1

p(xn, zn|β).

The LVMs considered in this work belongs to the so-called conjugate exponential family (Barndorff-
Nielsen, 2014). This model family has been largely studied in the statistics field and cover a wide
range of probability distributions and density functions such as Multinomial, Normal, Gamma,
Dirichlet, Beta, etc. According to this assumption, the functional form of the conditional distribution
of the local variables (xn, zn) given the global hidden variables β has the well-known exponential
family form (Barndorff-Nielsen, 2014),

ln p(xn, zn|β) = lnh(xn, zn) + βT t(xn, zn)− al(β), (1)

where the scalar functions h(·) and al(·) are the base measure and the log-normalizer, respectively;
the vector function t(·) is the sufficient statistics vector. The prior distribution p(β) also belongs to
the exponential family, and has the following structure,

ln p(β) = lnh(β) +αT t(β)− ag(α) (2)

were the sufficient statistics are t(β) = (β,−al(β)) and the hyperparameterα has two components
α = (α1, α2), the first component α1 has the same dimension as β and encodes the prior belief
about the distribution over β. The second component α2 > 0 is a scalar and encodes the strength in
our prior belief (Bernardo and Smith, 2009). This second parameter is also known in the literature
as the equivalent sample size (ESS) of the prior distribution (Heckerman et al., 1995)

Our inference goal is to approximate the posterior distribution of the hidden variables given the
observations, p(β, z|x). For the sake of simplicity, here we restrict a bit further our model class 1

and assume it satisfies the so-called complete conditional assumption (Hoffman et al., 2013). This
assumption states that the conditional distribution over β and z given the rest of variables has the
same functional form as the priors,

ln p(β|x, z,α) = lnh(β) + ηg(x, z,α)T t(β)− ag(x, z,α)

ln p(zn|xn,β) = h(zn) + ηl(xn,β)T t(zn)− al(ηl(xn,β)),

where the vector function η(·) denotes the natural parameter vectors of these conditional probability
distributions.

1. All the presented approach also applies to the more general conjugate exponential family.
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Figure 1: Left figure displays the core of the probabilistic model examined in this paper. Right
figure includes a temporal evolution model for βt as described in Section 6.

By Equations (1) and (2), the natural parameter vector of p(β|x, z,α) can be expressed as

ηg(x, z,α) = (α1 +
N∑
n=1

t(xn, zn), α2 +N). (3)

In Bayesian settings, computing the full posterior reduces to updating the natural parameters of
the prior. In that sense, the equivalent sample size of the posterior is equal to the equivalent sample
size of the prior plus the size of the observations.

2.2 Variational Inference

Variational inference is a deterministic technique for finding tractable posterior distributions, de-
noted by q, which approximates the Bayesian posterior, p(β, z|x), that is often intractable to com-
pute. More specifically, by lettingQ be a set of possible approximations of this posterior, variational
inference solves the following optimization problem for any model in the conjugate exponential
family

min
q(β,z)∈Q

KL (q(β, z) || p(β, z|x)) , (4)

where KL denotes the Kullback-Leibler divergence between two probability distributions.
In the mean field variational approach the approximation familyQ is assumed to fully factorize.

Following the notation of Hoffman et al. (2013), we have that

q(β, z|λ,φ) = q(β|λ)
N∏
n=1

q(zn|φn).

Furthermore, each factor variational distribution is assumed to belong the same family as the model’s
complete conditionals,

ln q(β|λ) = h(β) + λT t(β)− ag(λ)

ln q(zn|φn) = h(zn) + φTn t(zn)− al(φn).

As can be seen, λ parameterizes the variational distribution of β, while φ has the same role for the
variational distribution of z.
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To solve the minimization problem in Equation (4), the variational approach exploits the trans-
formation

ln p(x) = L(λ,φ|x,α) + KL (q(β, z|λ,φ) || p(β, z|x)) , (5)

where L(·|·) is a lower bound of ln p(x) since KL is non-negative. This lower bound has the
following form

L(λ,φ|x,α) =Eq[ln p(x|z,β)]− Eq[KL (q(z|φ) || p(z|β))]−KL (q(β|λ) || p(β|α))] (6)

We introduce x and α in L’s notation to make explicit the function’s dependency on x, the data
sample, and α, the natural parameters of the prior over β. As ln p(x) is constant, minimizing the
KL term is equivalent to maximizing the lower bound. Equation (6) shows the trade-off involved
in the lower-bound. The first term measures the model’s fit to the data, and favors variational
posterior mass concentrated around the maximum likelihood estimate. The second and third terms
are regulariser terms, and favor variational posteriors close to their respective prior distributions.

This lower bound can be maximized, for example, by a coordinate ascent method, that itera-
tively updates each individual variational distributions while holding the others fixed. As shown in
(Hoffman et al., 2013), these iterative updating equations has the following closed-form solutions,

λ = α+
N∑
n=1

Eφn
[(t(xn, zn), 1)] (7)

φn = Eλ[ηl(xn,β)] (8)

where Eλ[·] and Eφn
[·] denote the expected value according to q(β|λ) and q(zn|φn), respectively.

If the number of data points is large, alternative scalable methods can also be used (Hoffman et al.,
2013; Masegosa et al., 2017b).

2.3 Streaming Variational Bayes

In this paper, we envision a situation where the data stream is defined by sequence of batches of
data generated at discrete points in time. As new batches arrive, we want to update the posterior
distribution over the global parameters of the model. The streaming variational Bayes (SVB) algo-
rithm by Broderick et al. (2013) tries to address this problem by using a Bayesian recursive updating
approach,

p(β|x1, . . . ,xt) ∝ p(β|x1, . . . ,xt−1)

∫
p(xt, zt|β)dzt.

So, updating the posterior at time t reduces to a problem of computing a posterior over β condi-
tioned to the dataxt and given a prior equal to the posterior in the previous time step p(β|x1, . . . ,xt−1).

SVB translates the above recursive updating approach to the variational settings described in
the previous sections. Firstly, it approximates the posterior in the previous time step with a varia-
tional approximation, p(β|x1, . . . ,xt−1) ≈ q(β|λt−1), and, then, solves the following optimization
problem to get a new variational approximation to the posterior at time t by solving the following
variational problem,

arg min
λt,φt

L(λt,φt|xt,λt−1)
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3. Related Work

Concept drift in data streams has been extensively studied in the machine learning literature, spe-
cially in the context of classification and clustering models (Gaber et al., 2005; Aggarwal, 2007;
Gama and Rodrigues, 2009; Gama et al., 2014). One the main techniques employed to address this
problem has been exponential forgetting (Aggarwal, 2013; Papadimitriou et al., 2005). Under this
approach, new data samples are assigned a weight equal to one, but this weight is exponentially
decreased after every time step. In that way, old data samples are less relevant than newer data
samples when learning the model, accounting for potential drift in the data stream.

Bayesian modeling of non-stationary (i.e., with concept drift) data streams for general proba-
bilistic models has been much less studied. An online variational inference method, which expo-
nentially forgets the variational parameters associated with old data, was proposed by Honkela and
Valpola (2003). This approach suffers from the problem of setting an optimal exponential forget-
ting rate, which must be manually set by the user. A recent proposal, called population variational
Bayes (PVB) was introduced by McInerney et al. (2015), which directly builds on the stochastic
variational inference (SVI) algorithm (Hoffman et al., 2013). SVI assumes the existence of a fixed
data set observed in a sequential manner, and in particular that this data set has a known finite size.
This is unrealistic when modeling data streams. PVB addresses this problem by using the frequentist
notion of a population distribution, F, which is assumed to generate the data stream by repeatedly
sampling M data points at a time. M parameterizes the size of the population, and helps control the
variance of the population posterior. By artificially having a high variance in the posterior (i.e. by
setting a small M value), PVB is able to accommodate drift in the data set. Unfortunately, M must
be specified by the user. No clear rule exists regarding how to set it, and McInerney et al. (2015)
show that its optimal value may differ from one data stream to another. The streaming variational
Bayes (SVB) algorithm by Broderick et al. (2013) also tries to address the problem of Bayesian in-
ference in the data streams. SVB builds on a Bayesian recursive updating approach, but it assumes
data exchangeability and does nor provide any mechanism for dealing with concept drift.

The so-called power prior approach (Ibrahim and Chen, 2000) has been independently studied
in the context of data aggregation for Bayesian modeling. Power priors provide a sound mechanism
for Bayesian updating in the light of new data, and partial forgetting of old data. This approach
enjoys nice theoretical properties (Ibrahim et al., 2003) but it depends again on a hyperparameter,
which must be set by the user to control the forgetting rate.

A time series based modeling approach for concept drift using implicit transition models was
pursued by Ozkan et al. (2013); Kárnỳ (2014). Unfortunately, the implicit transition model also
depends on a hyper-parameter determining the forgetting-factor, which has to be manually set.

Many other works have proposed ad-hoc extension for specific LVMs which are able to deal
with non-stationary data streams (Shi and Zhu, 2014; Williamson et al., 2010a). A remarkable
effort has been given to dynamic extension of LDA models (Blei and Lafferty, 2006; Williamson
et al., 2010b; Perrone et al., 2017), but none of them is applicable to general conjugate exponential
family models. Moreover, most of them rely on complex inference mechanisms outside the class of
the nicely behaved variational inference over conjuagate exponential models, where solutions to the
gradients of the evidence lower function can be computed in closed-form.

Our approach provides a learning framework in the context of non-stationary data streams which
is applicable to any LVMs belonging to the conjugate exponential family, and which does not re-
quired to manually set hyperparameters for defining the degree of forgetting. By applying a pure
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Bayesian approach, our method provides at every time step a posterior probability over the optimal
forgetting rate to better accommodate the current data. This approach builds on a novel interpre-
tation of the exponential forgetting mechanism (Aggarwal, 2013; Papadimitriou et al., 2005) as an
implicit transition model (Ozkan et al., 2013). We also show that this implicit transition models can
be expressed in the form of a power prior (Ibrahim and Chen, 2000). Once expressed in that way,
we place a hierarchical prior over the exponential forgetting rate, and derive a novel variational in-
ference scheme which maintains the computational efficiency of variational methods over conjugate
exponential models.

4. Exponential Forgetting in Bayesian Learning with Data Streams

As stated in Section 1 and Section 3, exponential forgetting is a classic technique used in machine
learning and data mining to gradually forget past data and put more focus on more recent data
samples when performing online learning. In machine learning this idea is usually implemented by
exponentially down-weighting the loss function term associated with each data sample, so that data
samples closer in time have more impact on the model that older data samples (Gaber et al., 2005).

In a probabilisitic settings, exponential forgetting is achieved by using a log-likelihood function
with the form

ln p(x1,x2, . . . ,xt|β) =
t∑
i=1

ρt−i ln p(xi|β) + cte,

where ρ ∈ [0, 1] is the exponential decay weight.
Similarly, in Bayesian learning settings, we can use this scheme to compute the posterior,

p(β|x1,x2, . . . ,xt, ρ) ∝ p(x1,x2, . . . ,xt|β, ρ)p(β) = p(xt|β)p(xt−1|β)ρ · · · p(x1|β)ρ
t−1
p(β).

This scheme also applies to a variational learning letting by considering this exponential down-
weighted likelihood instead of the standard data likelihood, as used in (Honkela and Valpola, 2003).
Then the lower bound function has the following form,

Lρ(λ,φ|x,αu) = Eq

[
t∑
i=1

ρt−i ln p(xi|zi,β)

]
−KL (q(β, z|λ,φ) || p(β, z|αu)) . (9)

The updating equation of the coordinate gradient ascent algorithm described in Equation (7) can
now be expressed as follows (Winn and Bishop, 2005),

λ = αu +
t∑
i=1

ρt−iEφi
[(t(xi, zi), 1)]. (10)

The main point here is to highlight how, at the convergence point, the variational solution λ expo-
nentially down-weights old data samples.

Exponential forgetting also addresses the problem of Bayesian learning over unbounded data
streams. According to Equation (7), the λ parameter has two components, λ1 a component with
the same dimension as β, and a second component λ2 which is a scalar that corresponds to the
equivalent sample size of the variational posterior q(β|λ). If we denote by λ2,t the equivalent
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sample size of the variational posterior after seeing t samples, then this value can be computed as

λ2,t = α2 +

t∑
i=1

ρ(i−1).

If ρ < 1, then λ2,t converges to a finite number,

lim
t→∞

λ2,t = α2 +
1

1− ρ
, (11)

avoiding the problem of having a degenerated Bayesian posterior distribution in the presence of
an unbounded data stream. As noted in (Olesen et al., 1992; Ozkan et al., 2013), this schema
approximates a posterior distribution conditioned on the last 1

1−ρ data samples of the stream.

4.1 Exponential Forgetting in SVI and PVB

Stochastic varitional inference (SVI) (Hoffman et al., 2013) is a widely used variational learning
algorithm for dealing with large data sets. As commented above, Population Variational Bayes
(McInerney et al., 2015) is a simple modification of SVI used when the total size of the data set is
unknown. When these algorithms are applied in data streaming settings, they use a constant learning
rate ν,2 and the sequential updating equation of the global variational parameters λ can be written
as

λt = (1− ν)λt−1 + ν(αu + SEφt
[(t(xt, zt), 1)]), (12)

where S is equal the total size of the data set N in the case of SVI, or S is equal to the size of the
population M in the case of PVB. By expanding this equation, we find that

λt = (1− (1− ν)t)αu +Nν
t∑
i=1

(1− ν)t−iEφi
[(t(xi, zi), 1)]. (13)

The above equation highlights that SVI and PVB also exponentially down-weight old data samples,
with a forgetting rate ρ = 1− ν (compared the above equation with Equation (10)). Therefore, this
is one of the mechanisms these two methods use to adapt to drifts in the data stream.

In the case of the PVB algorithm, the parameterM helps to adapt to drifts in the data set through
the effect is has in computingφi, as discussed in McInerney et al. (2015). However, when the model
does not contain local random variables, the variational parameters φi do not exist and, then, the
size of the population does not play any role in adapting to drifts in the data stream.

5. MaxEntropy Transition Models

5.1 Transitioning Model Parameters

In order to extend the model in Figure 1 (a) to data streams, we may introduce a transition model
p(βt|βt−1) to explicitly model the evolution of the parameters over time, enabling the estimation
of the predictive density at time t:

p(βt|x1:t−1) =

∫
p(βt|βt−1)p(βt−1|x1:t−1)dβt−1. (14)

2. It is usually set to small values like 0.1 or 0.01.
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Figure 2: MaxEntropy Transition Models

However, this approach introduces two problems. First of all, in non-stationary domains we may
not have a single transition model or the transition model may be unknown. Secondly, if we seek
to position the model within the conjugate exponential family in order to be able to compute the
gradients of L in closed-form, we need to ensure that the distribution family for βt is its own conju-
gate distribution, thereby severely limiting model expressivity (we can, e.g., not assign a Dirichlet
distribution to βt).

Rather than explicitly modeling the evolution of the βt parameters as in Equation (14), we in-
stead follow the approach of Kárnỳ (2014) and Ozkan et al. (2013) who define the time evolution
model implicitly by constraining the maximum KL divergence over consecutive parameter distri-
butions. Specifically, by defining

pδ(βt|x1:t−1) =

∫
δ(βt − βt−1)p(βt−1|x1:t−1)dβt−1 (15)

one can restrict the space of possible distributions p(βt|x1:t−1), supported by an unknown transition
model, by the constraint

KL (p(βt|x1:t−1) || pδ(βt|x1:t−1)) ≤ κ. (16)

Kárnỳ (2014) and Ozkan et al. (2013) seek to approximate p(βt|x1:t−1) by the distribution p̂(βt|x1:t−1)
having maximum entropy under the constraint in (16); for continuous distributions the maximum
entropy can be formulated relative to an uninformative prior density pu(βt), which corresponds
to the Kullbach-Leibler divergence between the two distributions. This approach ensures that we
will not underestimate the uncertainty in the parameter distribution and the particular solution being
sought takes the form

p̂(βt|x1:t−1, ρt) ∝ pδ(βt|x1:t−1)
ρtpu(βt)

(1−ρt), (17)

where 0 ≤ ρt ≤ 1 is indirectly defined by (16), and therefore depends on the user defined parameter
κ.

In our streaming data setting we follow assumed density filtering (Lauritzen, 1992) and the SVB
approach (Broderick et al., 2013) and employ the approximation p(βt−1|x1:t−1) ≈ q(βt−1|λt−1),
where q(βt−1|λt−1) is the variational distribution calculated in the previous time step. Using this
approximation in (14) and (15), we can express pδ in terms of λt−1 in which case (17) becomes

p̂(βt|λt−1, ρt) ∝ pδ(βt|λt−1)ρtpu(βt)
(1−ρt), (18)
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which we use as the prior density for time step t. Now, if pu(βt) belong to the same family as
q(βt−1|λt−1), then p̂(βt|λt−1, ρt) will stay within the same family and have natural parameters
ρtλt−1 + (1 − ρt)αu, where αu are the natural parameters of pu(βt). Thus, under this approach,
the transitioned posterior remains within the same exponential family, so we can enjoy the full
flexibility of the conjugate exponential family (i.e. computing gradients of the L function in closed
form), an option that would not be available if one were to explicitly specify a transition model as
in Equation (14).

So, at each time step, we simply have to solve the following variational problem, where only
the prior changes with respect to the original SVB approach,

arg max
λt,φt

L(λt,φt|xt, ρtλt−1 + (1− ρt)αu). (19)

We shall refer to the method outlined in this section as SVB with power priors (SVB-PP). The
term power priors (Ibrahim and Chen, 2000) will be clear in Section 5.3.

5.2 Exponential Forgetting as MaxEntropy Transition Models

In this section we show that the exponential forgetting mechanism used in Bayesian learning settings
described in Section 4 is a MaxEntropy transition model with constant forgetting rate ρ .

The updating equation detailed in Equation (7) to optimize the lower-bound function described
in Equation (6) can be easily adapted to optimize the lower-bound associated to the MaxEntropy
transition models given in Equation (19). This new updating equation for MaxEntropy transition
models can be expressed as follows,

λt = Eφt
[(t(xt, zt), 1)] + ρλt−1 + (1− ρ)αu. (20)

Expanding the above equation we have

λt =
t∑
i=1

ρt−iEφi
[(t(xi, zi), 1)] + (1− ρt)αu, (21)

where we can see the scheme of exponentially down-weighting old data samples as in Equation (10).
The only difference between the above equation and Equation (10) is therefore in the use of the prior
term. When ρ < 1, ρt converges to zero, and they become identical in the limit. Therefore, it is
clear that the classic technique of exponential forgetting, which was usually supported by heuristic
arguments, has a sound interpretation in terms of MaxEntropy transition models.

5.3 Power Priors as MaxEntropy Transition Models

Power priors (Ibrahim and Chen, 2000) is a widely used class of informative priors for dealing with
situations in which historical data are available. Let x0 denote a previously obtained data set, and
let x1 be our current data set. According to the power priors scheme (Ibrahim and Chen, 2000), the
posterior probability over the model parameters should be computed as follows

p(β|x1,x0, ρ) ∝ p(x1|β)p(x0|β)ρp(β), (22)

where ρ ∈ [0, 1] is a scalar parameter down-weighting the likelihood of historical data relative to
the likelihood of the current data.

As stated in the following lemma, power priors can also be interpreted as maximum entropyCheck
this one.
We define
PP in 22,
then say
say that
“this ap-
proach”
– which
for me
means the
PP just
defined
– coin-
cides with
PP. Prob-
ably the
thing here
should re-
fer to the
Bayesian
maxent
setup,
right?

Check
this one.
We define
PP in 22,
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say that
“this ap-
proach”
– which
for me
means the
PP just
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setup,
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transition models.
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Lemma 1 The Bayesian updating scheme described by Figure 1 (b) and Equation (17), but with ρt
fixed to a constant value, is equivalent to the recursive application of the Bayesian updating scheme
of power priors given in Equation (22).

Proof Translate the recursive Bayesian updating approach of power priors into an equivalent two
time slice model, where β0 is given a prior distribution p and p(β1|β0) is a Dirac delta function.
The distribution p(β1|x0,x1, ρ) in this model is equivalent to p(β|x1,x0, ρ), which, in turn, is
equivalent (up to proportionality) to p(x1|β1)p̂(β1|x0, ρt). Note that the last p̂ term can alterna-
tively be expressed as p̂(β1|x0, ρt) ∝ pδ(β1|x0)

ρp(β1)
1−ρ ∝ pδ(x0|β1)ρp(β1).

This connection allows us to introduce well known results of power priors (Ibrahim et al., 2003), This para-
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p(β|x1,x0, ρ) = arg min
r∈P

ρ KL (r || p(β|x1,x0, ρ = 1)) + (1− ρ) KL (r || p(β|x1,x0, ρ = 0))

where P denotes the set of all possible densities over β. I.e. “power priors minimize the convex
combination of KL divergences between two extremes: one in which no historical data is used and
the other in which the historical data and current data are given equal weight.”

6. Hierarchical Power Priors

6.1 A Hierarchical Prior over the forgetting rate ρ

In the approach taken by Ozkan et al. (2013) (and, by extension, SVB-PP), the forgetting factor ρt
is user-defined. In this paper, we instead pursue a (hierarchical) Bayesian approach and introduce a
prior distribution over ρt allowing the distribution over ρt (and thereby the forgetting mechanism)
to adapt to the data stream. In this section we extend the model in Figure 1 (a) to also account for
the dynamics of the data stream being modeled. We shall here assume that only the parameters β
in Figure 1 (a) are time-varying, which we will indicate with the subscript t, i.e., βt. The resulting
model can be illustrated as in Figure 1 (b). We shall refer to models of this type as hierarchical
power prior (HPP) models.

We will show in Section 6.3 that the exponential and normal distributions, both of which trun-
cated to the interval [0,1], are valid alternatives as prior distributions, p(ρt|γ). The densities of these
distributions have the following forms,

p(ρt|γ) =
γ exp(−γρt)
1− exp(−γ)

, 0 ≤ ρt ≤ 1 (23)

p(ρt|µ, σ) =
exp

(
−(ρt − µ)2/(2σ2)

)
√

2πσ2
(

Φ(1−µσ )− Φ(−µσ )
) , 0 ≤ ρt ≤ 1 (24)

where Φ represents the cumulative distribution of the standard normal distribution, µ ∈ R (can
be outside the interval [0, 1]) and σ > 0. Since the natural parameters of the normal distribution
are
(
µ/σ2,−1/(2σ2)

)
, it is sometimes convenient to talk in terms of the precision η = 1/σ2 (the

reciprocal of the variance). Using the precision, the natural parameters become (µη,−η/2). Notice
that the precision η appears in both components.

Figure 3 plots different densities of both distributions for different values of the parameters. The
Truncated Exponential allows to model a uniform prior and priors that either favors ρt values close
to 1 (i.e. non-forgetting past data) or ρt values close to 0 (i.e. forgetting past data). The Truncated

11
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Figure 3: Density functions for the Truncated Exponential and the Truncated Normal distributions,
respectively, for different values of their parameters.

Normal distribution, when using mean equal to 0.5, tends to favor non-extreme ρt values (i.e. partial
forgetting of past data), where the variance parameter defines the strength of this belief.

For later use, we also detail here the equation for computing the expected value of ρt for both
distributions:

E[ρt|γ] =
1

(1− e−γ)
− 1

γ
, (25)

Eq[ρt|µ, σ] = µ+ σ
φ(−µσ )− φ(1−µσ )

Φ(1−µσ )− Φ(−µσ )
, (26)

where γ is the mean parameter parameter of the truncated exponential; µ and σ are the parameters
of the truncated normal distribution in [0, 1], and φ and Φ are respectively the probability density
function and the cumulative distribution function of the standard normal distribution.

6.2 The double lower-bound

For updating the model distributions we pursue a variational approach, where we seek to maximize
the evidence lower bound L in Equation (5) for time step t. However, since the model in Figure 1 (b)
does not define a conjugate exponential distribution due to the introduction of p(ρt|γ), we cannot
maximize L directly. Instead we will derive a (double) lower bound L̂ (with L̂ ≤ L) and use this
lower bound as a proxy for the updating rules of the variational posteriors.

First of all, by instantiating the lower bound LHPP (λt,φt,ωt|xt,λt−1) in Equation (5) for the
HPP model we obtain

LHPP (λt,φt,ωt|xt,λt−1) = Eq[ln p(xt|Zt,βt)]− Eq[KL (q(Zt|φt) || p(Zt|βt))]
− Eq[KL (q(βt|λt) || p̂(βt|λt−1, ρt))]
−KL (q(ρt|ωt) || p(ρt|γ))

(27)

where ωt is the variational parameter for the variational distribution for ρt. For ease of presenta-
tion we shall sometimes drop from LHPP (λt,φt,ωt|xt,λt−1) the subscript as well as the explicit
specification of the parameters when this is otherwise clear from the context.

12



LEARNING LATENT VARIABLE MODELS FROM NON-STATIONARY DATA STREAMS

We now define L̂HPP (λt,φt,ωt|xt,λt−1) as

L̂HPP (λt,φt,ωt|xt,λt−1) = Eq[ln p(xt|Zt,βt)]− Eq[KL (q(Zt|φt) || p(Zt|βt))]
− Eq[ρt]KL (q(βt|λt) || p(βt|λt−1))
− (1− Eq[ρt])KL (q(βt|λt) || p(βt|αu))

−KL (q(ρt|ωt) || p(ρt|γ)) (28)

which provides a lower bound for L.

Theorem 1 L̂HPP gives a lower bound for LHPP :

L̂HPP (λt,φt,ωt|xt,λt−1) ≤ LHPP (λt,φt,ωt|xt,λt−1).

Proof We start by looking at the difference between the two bounds LHPP and L̂HPP , which is
given by the log-normalizer of p̂(βt|λt−1, ρt):

L̂HPP − LHPP = Eq[ρtag(λt−1) + (1− ρt)ag(αu)

+ ag(ρtλt−1 + (1− ρt)αu)]
(29)

Next, observe that ag(ρtλt−1 + (1 − ρt)αu) ≤ ρtag(λt−1) + (1 − ρt)ag(αu) because the log-
normalizer ag is always a convex function (Wainwright et al., 2008), and the result follows. Full
details are given in the supplementary material.

Even though Equation (28) defines an alternative objective function, when we compare this
double lower bound with Equation (6) we can observe that the double lower bound still have the
intuitive interpretation of the standard lower bound in terms of data fitting and Kullback-Leibler
(KL) regularization. The only difference is that the KL regularization term associated to q(βt|λt)
appears now as a convex combination of two KL terms, one regularizing with respect to p(βt|λt−1)
and the other with respect to p(βt|αu), whith Eq[ρt] acting as a combination-factor.

Rather than seeking to maximize L we will instead maximize L̂, see Equation (29). Thus,
maximizing L̂wrt. the variational parameters λt and φ also maximizes L. By the same observation,
we also have that the (natural) gradients are consistent relative to the two bounds:

Corollary 1

∇natλt
L̂HPP (λt,φt,ωt|xt,λt−1) = ∇natλt

LHPP (λt,φt,ωt|xt,λt−1)
= ∇natλt

L(λt,φt|xt,Eq[ρt]λt−1 + (1− E[ρt])αu)

The same result holds for φt.

Proof Follows immediately from Equation (29) because the difference does not depend of λt and
φt.

Thus, updating the variational parameters λt and φt in HPP models can be done as for regular
conjugate exponential models of the form in Figure 1. A pseudo-code description of the algorithm
can be found in Algorithm 1 when ρt is assumed to follow a Truncted Exponential distribution.
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In order to update ωt we rely on L̂, which we can maximize using the natural gradient wrt. ωt
(Sato, 2001) and which can be calculated in closed form for a restricted distribution family for ρt,
as stated in the following result.
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Algorithm 1 SVB with Hierarchical Power Priors and Truncated Exponential (SVB-HPP-Exp)
Input: A data batch xt, the variational posterior in previous time step λt−1.
Output: (λt,φt,ωt), a new update of the variational posterior.

1: λt ← λt−1.
2: Eq[ρt]← 0.5.
3: Randomly initialize φt.
4: repeat
5: (λt,φt) = arg minλt,φt

L(λt,φt|xt,Eq[ρt]λt−1 + (1− E[ρt])αu)
6: ωt = KL (q(βt|λt) || pu(βt))−KL (q(βt|λt) || pδ(βt|λt−1)) + γ
7: Update Eq[ρt] according to Equation (25) or Equation (26).
8: until convergence
9: return (λt,φt, ωt)

Lemma 2 Assuming that the first component of the sufficient statistics function for ρt is the identity
function, i.e. t1(ρt) = ρt, we have

∂natL̂
∂ωt,1

=KL (q(βt|λt) || pu(βt))−KL (q(βt|λt) || pδ(βt|λt−1)) + γ1 − ωt,1

∂natL̂
∂ωt,k

=γk − ωt,k (k 6= 1)

(30)

Proof Based on a straightforward algebraic derivation of the gradient using standard properties of
the exponential family. Full details are given in the supplementary material.

From the above lemma we can easily deduce that the truncated exponential distributions, whose
sufficient statistics are t(ρt) = ρt, and the truncated normal distribution, whose sufficient statistics
are t(ρt) = (ρt, ρ

2
t )
T , satisfied the criteria to be considered as hierarchical priors for ρt.

The problem of the above result is that for k 6= 1, the optimal ωt,k is just equal to the the prior
value, i.e. ωt,k = γk. In the case of the Truncated Normal, which has a two-dimensional natural
parameter vector, it would imply that the variance of the posterior q(ρt|ωt), denoted by σ2q , will be
equal to the variance of prior, denoted by σ2p , which has to be set manually3. To address the issue of
having to manually fixed the variance of the Truncated Normal prior, σ2p , we employ an empirical
Bayes approach and consider σ2p as another free parameter of the double lower bound we want to
optimize. So, we need to compute the gradient of the double lower bound w.r.t. this parameter,

∂L̂
∂σ2p

=
∂γ1
∂σ2p

∂L̂
∂γ1

+
∂γ2
∂σ2p

∂L̂
∂γ2

= −µp
σ4p

(E[ρt|µq, σ2q ]− E[ρt|µp, σ2p]) +
1

2σ4p
(E[ρ2t |µq, σ2q ]− E[ρ2t |µp, σ2p]),

where γ = (µp/σ
2
p,−1/(2σ2p)) is the natural parameter vector of the Truncated Normal prior, and

µp and µq denote the mean of the Truncated Normal prior and posterior over ρt, respectively. We
set µp to 0.5 trying to define a a non-informative and symmetric prior.

3. We dropped the t-index in σ2
q for simplicity.
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Figure 4: Example with Gaussian posterior distribution. Two possible situations: no concept drift
(left) when λt is closer to λt−1 than to αu (in terms of KL distance); otherwise (right)
there is concept drift. See Section 6.3 for details.

Note that in this case we have a plain gradient not a natural gradient wrt σ2p . Also note that there
is no closed-form solution for the stationary point of σ2p . To optimize along this direction, we use a
simple gradient ascent approach with backtracking line-search to set the learning rate.

6.3 Towards a Measure of Concept Drift

Observe that the form of the natural gradient of ωt given in Lemma 2 has an intuitive semantic
interpretation in terms of measure of concept drift. If we follow a coordinate ascent algorithm, at
every iteration we should set

ωt = KL (q(βt|λt) || pu(βt))−KL (q(βt|λt) || pδ(βt|λt−1)) + γ (31)

Specifically, using the constant γ as a threshold, we see that if the uniform prior pu(βt) is closer to
the the variational posterior at time t, in terms of KL distance, than the variational posterior at the
previous time step (i.e. KL (q(βt|λt) || pu(βt)) + γ < KL (q(βt|λt) || pδ(βt|λt−1))), then we will
get a negative value for ωt.

This in turn implies that Eq[ρ] < 0.5, according to Equation (25) and Equation (26), (plotted
in Figure 5), which means that we have a higher degree of forgetting for past data. If ωt > 0 then
Eq[ρ] > 0.5, and less past data is forgotten. Figure 5 (left) graphically illustrates this trade-off. And
Figure 4 shows a particular example of this situation using Gaussian posterior distributions.

The difference between the use of Truncated Normal over a Truncated Exponential is that with
the former the relation between the ωt value and the Eq[ρt] value can tuned by a change in the
precision of the truncated normal prior, as it is graphically illustrated in Figure 5 (right). By using a
prior with a higher precision, we impose a stronger belief about that ρt values are neither close to 1
nor 0. In this way, the approach has the possibility to enforce smooth drift regimes.

6.4 The Multiple Hierarchical Power Prior Model

In this section we propose a modification of our HPP model to deal with complex concept drift
patterns which involve only a part of the model. For example, let us consider the application of a
LDA model for tracking over time the evolution of the topics in a text corpora. Under these settings,
a drift could eventually affect only a subset of the topics. Using our current approach we might
detect this drift and forget past of the data to adapt to the new situation and learn the new topics.
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Figure 5: Relationship between ωt and Eq[ρt] according to Equation (25) (left) and Equation (26)
(right). See Section 6.3 for details.

However, if some topics have not changed we are losing information that we could provide better
estimations for these topics.

We propose an immediate extension of HPP which include multiple power priors ρ(i)t , one for
each global parameter βi. In this model the ρ(i)t ’s are pair-wise independent. The latter ensures
that optimizing the L̂ can be performed as above, since the variational distribution for each ρ(i)t can
be updated independently of the other variational distributions over ρ(j)t , for j 6= i. This extended
model allows local model substructures to have different forgetting mechanisms, thereby extending
the expressivity of the model. We shall refer to this extended model as a multiple hierarchical power
prior (MHPP) model.

7. Experiments

7.1 Experimental Set-up

In this section we will evaluate the following methods:

1. Streaming variational Bayes (SVB) as described in Section 2.3.

2. Four versions of Population Variational Bayes (PVB)4: Population-sizeM equal a fixed value
(M = 1 000 in Section 7.2 andM = 10 000 (or 1 000 for LDA) in Section 7.3). Learning-rate
ν = 0.1 or ν = 0.01. Mini-batch size was set 1000 (100 for LDA).

3. Two versions of the SVB method with power priors (SVB-PP) or fixed exponential forgetting
(as described in Section 5.1) with: ρ = 0.9 or ρ = 0.99.

4. Three version of our method based on the SVB method with adaptive exponential forgetting
using hierarchical power priors (as described in Section 6):

• SVB-HPP-Exp using a single shared ρ with a Truncated Exponential distribution as
prior over ρ with γ = 0.1 (i.e. close to uniform).

• SVB-MHPP-Exp using separate ρ(i) for each parameters (as described in Section 6.4)
with Truncated Exponential distributions as priors over each ρ(i) with γ = 0.1.

4. We do not compare with SVI, because SVI is a special case of PVB when M is equal to the total size of the stream.
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Figure 6: E[βt] in the Beta-Binomial model artificial data set
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Figure 7: Results for the Beta-Binomial model artificial data set. Left figire: The equivalent sam-
ple, ESSt, for the different methods; the values for SVB-HPP is shown on the right
y-axis. Right figure: The expected values of ρt, Eq[ρt], for batches of size 100 and 1000,
respectively.

• SVB-MHPP-Norm using also separate ρ(i) for each parameters but with Truncated
Normal distributions as priors over each ρ(i). In this case we use µp = 0.5 and learn the
variance σ2p using the empirical Bayes approach described at the end of Section 6.2.

The underlying variational engine is the VMP algorithm (Winn and Bishop, 2005) for all models;
VMP was terminated after 100 iterations or if the relative increase in the lower bound fell below
0.01% (0.0001% for LDA). All priors were uninformative, using either flat Gaussians, flat Gamma
priors or uniform Dirichlet priors. For the LDA model (Blei et al., 2003), we use standard priors
for this model which include a Dirichlet prior over topics with α = 1

|V | where |V | denotes the size
of the vocabulary, and another Dirichlet prior over topics assignments with α = 0.1. Variational
parameters were randomly initialized using the same seed for all methods.

7.2 Evaluation using an Artificial Data Set

First, we illustrate the behavior of the different approaches in a controlled experimental setting: We
produced an artificial data stream by generating 100 samples (i.e., |xt| = 100) from a Binomial
distribution at each time step. We artificially introduce concept drift by changing the parameter p
of the Binomial distribution: p = 0.2 for the first 30 time steps, then p = 0.5 for the following 30
time steps, and finally p = 0.8 for the last 40 time steps. The data stream was modelled using a
Beta-Binomial model.
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Parameter Estimation: Figure 6 shows the evolution of Eq[βt] for the different methods. We
recognize that SVB simply generates a running average of the data, as it is not able to adapt to
the concept drift. The results from PVB depend heavily on the learning rate ν, where the higher
learning rate, which results in the more aggressive forgetting, works better in this example. Recall,
though, that ν needs to be hand-tuned to achieve an optimal performance. As expected, the choice
of the size of the population M for SVB does not have an impact, because the present model has
no local hidden variables (cf. Section 4.1). SVB-PP produces results almost identical to PVB when
ρ matches the learning rate of PVB (i.e., ρ = 1 − ν). Finally, SVB-HPP provides the best results,
almost mirroring the true model.

Equivalent Sample Size (ESS): Figure 7 (left) gives the evolution of the equivalent sample
size, ESSt, for the different methods 5. The ESS of PVB is always given by the constant M . For
SVB, the ESS monotonically increases as more data is seen, while SVB-PP exhibits convergence to
the limiting value computed in Equation (11). A different behaviour is observed for SVB-HPP: It is
automatically adjusted. Notice that the values for this model is to be read off the alternative y-axis.
We can detect the the concept drift, by identifying where the ESS rapidly declines.

Evolution of Expected Forgetting factor: In Figure 7 (right) the series denoted “E[ρ]− 100”
shows the evolution of Eq[ρt] for the artificial data set. Notice how the model clearly identifies
abrupt concept drift at time steps t = 30 and t = 60. The series denoted “E[ρ] − 1000” illustrates
the evolution of the parameter when we increase the batch size to 1000 samples. We recognize a
more confident assessment about the absence of concept drift as more data is made available.

7.3 Evaluation using Real Data Sets

7.3.1 DATA, MODELS AND EVALUATION CRITERIA

For this evaluation we consider four real data sets from four different domains:
Electricity Market (Harries, 1999): The data set describes the electricity market of two Aus-

tralian states. It contains 45312 instances of 6 attributes, including a class label comparing the
change of the electricity price related to a moving average of the last 24 hours. Each instance in
the data set represents 30 minutes of trading; during our analysis we created batches such that xt
contains all information associated with month t.

The data is analyzed using a Bayesian linear regression model. The binary class label is as-
sumed to follow a Gaussian distribution in order to fit within the conjugate model class. Similarly,
the marginal densities of the predictive attributes are also assumed to be Gaussian. The regres-
sion coefficients are given Gaussian prior distributions, and the variance is given a Gamma prior.
Note that the overall distribution does not fall inside the conditional conjugate exponential family
(Hoffman et al., 2013), hence we do not apply SVI (and PVB) in this setting.

GPS (Zheng et al., 2008, 2009, 2010): This data set contains 17 621 GPS trajectories (time-
stamped x and y coordinates), totalling more than 4.5 million observations. To reduce the data-size
we kept only one out of every ten measurements. We grouped the data so that xt contains all data
collected during hour t of the day, giving a total of 24 batches of this stream.

Here we employ a model with one independent Gaussian mixture model per day of the week,
each mixture with 5 components. This enables us to track changes in the users’ profiles across hours
of the day, and also to monitor how the changes are affected by the day of the week.

5. For this model, ESS is simply computed by summing up the components of the λt defining the Beta posterior.
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Finance (Borchani et al., 2015): The data contains monthly aggregated information about the
financial profile of around 50 000 customers over 62 (non-consecutive) months. Three attributes
were extracted per customer, in addition to a class-label telling whether or not the customer will
default within the next 24 months.

We fit a naı̈ve Bayes model to this data set, where the distribution at the leaf-nodes is 5-
component mixture of Gaussians distribution. The distribution over the mixture node is shared
by all the attributes, but not between the two classes of customers.

NIPS (Perrone et al., 2017): This dataset consist of the abstracts of published papers in the
NIPS conference, between 1987 and 2015 (5804 documents in total). The data were pre-processed
by choosing the most relevant individual terms across the whole dataset. This was done by or-
dering the words (11463 in total) by their importance in the dataset, using the TF-IDF metric
(term frequency-inverse document frequency). The top 10 words after this filtering were ’pol-
icy’,’image’,’kernel’,’network’,’neurons’,’training’,’graph’,’images’,’matrix’ and ’tree’. While the
last 5 words in the ranking were ’ralf’, ’ciated’, ’havior’, ’references’ and ’abstract’. Only the
top 100 words were kept, according to this criterion. In that way, we remove words that are not sig-
nificant to track the concept drift in this data set. The documents were grouped by year, yielding a
total of 29 batches of documents of different sizes. A LDA model (Blei et al., 2003) with ten topics
was employed to analyze the vocabulary and to detect changes in the evolution of the major topics
of the papers of this conference every year. Note that the temporal extension of this model involves
dealing with dynamics at the Dirichlet distributions over the topics. As commented in Section 3,
there have been many previous approaches trying to deal with this problem (Blei and Lafferty, 2006;
Williamson et al., 2010b; Perrone et al., 2017), but none of them is applicable to general conjugate
exponential family models and, in general, rely on much more complex inference schemes.

To evaluate the different methods discussed, we look at the test marginal log-likelihood (TMLL).
Specifically, each data batch is randomly split in a train data set, xt, and a test data set, x̃t, containing
two thirds and one third of the data batch, respectively. Then, TMLLt is computed as TMLLt =
1
|x̃t|
∫
p(x̃t, zt|βt)p(βt|xt)dztdβt6.

A detailed description of all the models, including their structure and their variational families,
is given at the supplementary material.

7.3.2 DISCUSSION

In this first part, we want to highlight how the basic versions of SVB-HPP and SVB-MHPP outper-
forms the rest of the approaches in most of the cases.

Figure 8 shows for each method the difference between its TMLLt and that obtained by SVB
(which is considered the baseline method). To improve readability, we only plot the results of the
best performing method inside each group of methods. Figure 9 shows the development of Eq[ρt]
over time for SVB-HPP-Exp, SVB-MHPP-Exp and SVB-MHPP-Norm. For SVB-HPP-TExp we
only have one ρt-parameter, and its value is given by the solid line. SVB-MHPP utilizes one ρ(i)

for each variational parameter.7 In this case, we plot Eq[ρ
(i)
t ] at each point in time to indicate the

variability between the different estimates throughout the series. We also report the average of the

6. For LDA, |x̃t| refers to the number of words in the test set, we then compute the so-called per-word perplexity.
7. The numbers of variational parameters are 14, 78, 33 and 10 for the Electricity, GPS, Financial and NIPS model,

respectively.
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Eq[ρ
(i)
t ] values at every time step. Finally, we compute each method’s aggregated test marginal

log-likelihood measure
∑T

t=1 TMLLt, and report these values in Table 1.

DATA SET SVB PVB SVB-PP SVB-HPP SVB-MHPP
(1) (2) (3) (4) ρ = 0.9 ρ = 0.99 EXP EXP NORM

ELECTRICITY -44.91 -51.01 -52.19 -51.11 -61.70 -43.92 -44.80 -40.05 -40.02 -39.91
GPS -1.98 -2.10 -2.77 -1.97 -4.49 -1.94 -1.97 -1.97 -1.86 -1.86
FINANCE -19.84 -22.29 -22.57 -20.40 -20.73 -19.05 -19.78 -19.83 -19.83 -19.82
NIPS -4.07 -4.04* -4.21* -4.01 -4.12 -4.02 -4.06 -4.01 -4.00 -4.00

PVB PARAMETERS: (1) M = 10k, ν = 0.1; (2) M = 10k, ν = 0.01; (3) M = |xt|, ν = 0.1; (4) M = |xt|, ν = 0.01.
*: FOR NIPS, M = 1k WAS USED IN (1) AND (2).

Table 1: Aggregated Test Marginal Log-Likelihood. See text for discussion.

For the electricity data set, we can see that the two proposed methods (SVB-HPP and SVB-
MHPP) perform best. All models are comparable during the first nine months, which is a period
where our models detect no or very limited concept drift (cf. top right plot of Figure 8). However,
after this period, both SVB-HPP and SVB-MHPP detects substantial drift, and is able to adapt better
than the other methods, which appear unable to adjust to the complex concept drift structure in the
latter part of the data. SVB-HPP and SVB-MHPP continue to behave at a similar level, mainly
because when drift happens it typically includes a high proportion of the parameters of the model.

For the GPS data set, we can observe how the SVB-MHPP is superior to the rest of the methods,
particularly towards the end of the series. When looking at Figure 8 (middle right panel), we can
see that a significative proportion of the model parameters are drifting (i.e., Eq[ρ

(i)
t ] ≤ 0.05) at all

times, while another proportion of the parameters show a quite stable behavior (ρ-values above 0.9).
This complex pattern is not captured well by SVB-HPP, which ends up assuming no concept drift
after the initial time-step.

The financial data set shows a different behavior. During the first months, no major differences
among methods can be found. But after month 30, SVB-PP with ρ = 0.9 is superior. Looking
at the E[ρ

(i)
t ]-values of SVB-MHPP, we observe that there is significant concept drift in some of

the parameters over the first few months. However, only a few parameters exhibit noteworthy drift
after the first third of the sequence. Apparently, the simple SVB-PP approach has the upper hand
when the drift is constant and fairly limited, at least when the optimal forgetting factor ρ has been
identified.

In the case of the NIPS data set, we see again as HPP approaches captures the drift in the data.
SVB-HPP hardly detects any drift in the first 20 years and performs quite similarly to SVB (i.e.
relative performance close to zero). But in the last 10 years SVB-HPP clearly outperforms SVB
because it detects two strong drifts at years 23 and 29. So, at these time steps the whole LDA model
is almost retrained from scratch. In this case, SVB-MHPP is able to capture more fine-grained drifts
in the data. Mainly, it detects changes in some topics while other topics remain constant over time.
This allows SVB-MHPP to outperform SVB-HPP during some periods.

We have also observed there are no major differences between SVB-MHPP-Exp and SVB-
MHPP-Norm. So, it seems that inclusion of alternative priors it is not having a big impact into the
performance, at least if the variance parameter of the Truncated Normal is fixed automatically using
an empirical Bayes approach. But this is something that may require further investigations.
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Figure 8: Results of the TMLLt improvement over SVB for the competing methods, for the four
real data sets. See text for discussion.
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Figure 9: Evolution of Eq[ρt] for SVB-HPP and SVB-MHPP.

We conclude this section by highlighting that the performance of SVB-PP and PVB depend
heavily on the hyper-parameters of the model, cf. Table 1. As an example, consider SVB-PP and
how its performance varies by changing the ρ parameter. Similarly, PVB’s performance is sensitive
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both to ν (see in particular the results for the GPS data) and M (financial data). These hyper-
parameters are hard to fix, as their optimal values depend on data characteristics (see Broderick
et al. (2013); McInerney et al. (2015) for similar conclusions). We therefore believe that the fully
Bayesian formulation is an important strong point of our approach.

8. Conclusions and Future Work

In this paper we have introduced a novel Bayesian approach for learning general latent variable
models from non-stationary data streams. For this purpose, we introduce max-entropy transition
models as a general method for transitioning the global parameters of a latent variable model. We
also show that previous approaches like exponential forgetting and power priors can be seen as
specific cases of this general transition model. But these approaches are only able to model slowly
changing data streams. Our approach is able to handle both abrupt and gradual drifts in the data
stream by explicitly modeling the rate of change of the data stream. For this purpose we introduce
a novel hierarchical prior which allows to adapt to the different drifts one can encounter in a data
stream. We then develop an efficient variational inference scheme that optimizes a novel lower
bound of the likelihood function.

As future work we aim to provide a sound approach to semantically characterize concept drift
by inspecting the E[ρ

(i)
t ] values provided by SVB-MHPP. And to investigate the effects in the vari-

ational approximation introduced by the use of the double lower bound approximation.
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Appendix A.

Appendix A. Proof of Theorem 1 and Lemma 2

Proof [Proof of Theorem 1] In the specification of L we have that Eq[ln p̂(βt|λt−1, ρt)] (defined in
Equation (7)) can be expanded as (ignoring the base measure) :

Eq[(ρtλt−1 + (1− ρt)αu)t(βt)− ag(ρtλt−1 + (1− ρt)αu)].

Since ag is convex we have

ag(ρtλt−1 + (1− ρt)αu) ≤ ρtag(λt−1) + (1− ρt)ag(αu),
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which combined with Equation (10) gives

Eq[ln p(xt,Zt|βt)] + Eq[(ρtλt−1 + (1− ρt)αu)t(βt)

− ρtag(λt−1)− (1− ρt)ag(αu)] + Eq[p(ρt|γ)]

− Eq[ln q(Zt|φt)]− Eq[q(βt|λt)]− Eq[q(ρt|ωt)] ≤ L.

Lastly, by exploiting the mean field factorization of q and using the exponential family form of
pδ(βt|λt−1) and pu(βt) we get the desired result.

Proof [Proof of Lemma 2] Firstly, by ignoring the terms in L̂ (Equation (28)) that do not involve ωt
we get

L̂(ωt) = Eq[ρt](Eq[ln(pδ(βt|λt−1))− Eq[ln pu(βt)]) + Eq[p(ρt|γ)]− Eq[q(ρt|ωt)]
= Eq[ρt](Eq[ln(pδ(βt|λt−1))− Eq[ln pu(βt)]) + γTEq[t[ρt]]− (ωTt Eq[t[ρt]]− ag(ωt)) + cte

As we have assumed that the sufficient statistics function t(ρt) for p(ρt|γ) and q(βt|λt) contains
the identity function (t1(ρt) = ρt) we have

L̂(ωt) =

(
Eq[ρt]

Eq[t6=1(ρt)]

)T (
(Eq[ln(pδ(βt|λt−1))− Eq[ln pu(βt)]) + γ1 − ω1

γ 6=1 − ω 6=1

)
− ag(ωt) + cte

where the sub-index 6= 1 refers to those sub-indexes different from 1.
Using the standard equality of exponential family distributions, Eq[t(ρt)] = ∇ωtag(ωt), we

have

∇ωtL̂ = ∇2
ωt
ag(ωt)

(
Eq[ln(pδ(βt|λt−1))− ln pu(βt)] + γ1 − ωt,1

γ 6=1 − ωt,6=1

)
We can now find the natural gradient by premultiplying ∇ωtL̂ by the inverse of the Fisher

information matrix, which for the exponential family corresponds to the inverse of the Hessian of
the log-normalizer:

∇̂ωtL̂ = (∇2
ωt
ag(ωt))

−1∇ωtL̂

=

(
Eq[ln(pδ(βt|λt−1))− ln pu(βt)] + γ1 − ωt,1

γ 6=1 − ωt,6=1

)
Lastly, by introducing q(βt|λt)−q(βt|λt) inside the expectation we get the difference in Kullbach-
Leibler divergence KL (q(βt|λt) || pu(βt))−KL (q(βt|λt) || pδ(βt|λt−1)).

Appendix B. Experimental Evaluation

B.1 Probabilistic Models

We provide a (simplified) graphical description of the probabilistic models used in the experiments.
We also detail the distributional assumptions of the parameters, which are then used to define the
variational approximation family.
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ELECTRICITY MODEL

x1,t x2,t x3,t

yt

(µi, γi) ∼ NormalGamma(1, 1, 0, 1e− 10)

γ ∼ Gamma(1, 1)

bi ∼ N (0,+∞)

xi,t ∼ N (µi, γi)

yt ∼ N

(
b0 +

∑
i

bixi,t, γ

)

GPS MODEL

zt

Dayt

xt yt

p ∼ Dirichlet(1, . . . , 1)

pk ∼ Dirichlet(1, . . . , 1)

(µ
(x)
j,k , γ

(x)
j,k ) ∼ NormalGamma(1, 1, 0, 1e− 10)

(µ
(y)
j,k , γ

(y)
j,k ) ∼ NormalGamma(1, 1, 0, 1e− 10)

Dayt ∼Multinomial(p)

(zt|Dayt = k) ∼Multinomial(pk)

(xt|zt = j,Dayt = k) ∼ N (µ
(x)
j,k , γ

(x)
j,k )

(yt|zt = j,Dayt = k) ∼ N (µ
(y)
j,k , γ

(y)
j,k )

FINANCIAL MODEL

zt

Defaultt

x1,t x2,t x3,t

p ∼ Dirichlet(1, . . . , 1)

pk ∼ Dirichlet(1, . . . , 1)

(µi;j,k, γi;j,k) ∼ NormalGamma(1, 1, 0, 1e− 10)

Defaultt ∼ Binomial(p)
(zt|Defaultt = k) ∼Multinomial(pk)

(xi,t|zt = j,Dayt = k) ∼ N (µi;j,k, γi;j,k)
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