
InferPy: Probabilistic Modeling Made Easy

Rafael Cabañas, Andrés R. Masegosa, Antonio Salmerón

University of Almeŕıa, ES-04120 Almeŕıa, Spain

Abstract

InferPy is a high-level Python API for probabilistic modeling built on top of
Edward and Tensorflow. InferPy, which is strongly inspired by Keras, focuses
on being user-friendly by using an intuitive set of abstractions that make easy
to deal with complex probabilistic models. It should be seen as an interface
rather than a standalone machine-learning framework. In general, InferPy
has the focus on enabling flexible data processing, easy-to-code probabilistic
modeling, scalable inference and robust model validation.

Keywords: keyword 1, keyword 2, keyword 3

1. Introduction1

Machine learning (ML) [1] is a fundamental part of many artificial in-2

telligence techniques [2], and the key of many innovative applications. Un-3

fortunately, for a company or an institution, the development of ML models4

specific to their problems requires enormous efforts [3]. For this reason, prob-5

abilistic programming languages (PPLs) [4] are an active area of research.6

PPLs offer the same advantages to the ML community that high-level pro-7

gramming languages offered to software developers fifty years ago [5]. Pro-8

grammers could specialize in model development while ML experts could9

focus their efforts on developing reusable inference engines. Thus, the num-10

ber of non-experts who can create applications using a PPL could increase.11

Special attention requires those PPLs which exploit recent advances in prob-12

abilisitic inference for defining probabilistic models containing deep neural13

networks [6, 7]. These PPLs rely on deep learning libraries like Tensorflow14

Email addresses: rcabanas@ual.es (Rafael Cabañas), andresmasegosa@ual.es
(Andrés R. Masegosa), antonio.salmeron@ual.es (Antonio Salmerón)

Preprint submitted to Name of journal September 20, 2018



[8]. The main drawback of these approaches is the high complexity of the15

provided abstractions, specially those centered around the definition of prob-16

ability distributions over multidimensional Tensors.17

InferPy1 tries to address these issues by defining a user-friendly API which18

trades-off model complexity with ease of use. Complex operations over Ten-19

sor objects are hidden to the user. Similarly, Edward’s flexible approach to20

probabilistic inference demands to provide specific details such as the varia-21

tional family. Again, InferPy gives the possibility to hide all this information22

and make inference with a single line of code. As InferPy uses Tensorflow as23

computing engine, all the parallelization details are hidden to the user.24

2. Background25

InferPy focuses on hierarchical probabilistic models structured in two lay-26

ers: (i) a prior model defining a joint distribution p(w) over the global pa-27

rameters of the model (w can be a single random variable or a bunch of28

random variables with any given dependency structure); (ii) a data or ob-29

servation model defining a joint conditional distribution p(x, z|w) over the30

observed quantities x, and the the local hidden variables z governing the31

observation x. As a running example, Figure 1 shows a model of this type.32

xn zn p

µk

σk

NK

p ∼ DirK(α)

zn ∼ CatK(p)

xn ∼ Nd(µzn , σzn)

µk ∼ Nd(0, I)

σk ∼ InvGamma(0, 1)

Figure 1: Mixture of K d-dimensional Gaussian distributions learned from N observations.

3. Software Framework33

3.1. Model Definition34

In InferPy, models are specified using a simple language of random vari-35

ables, which are grouped in a probabilistic model object (i.e., defined using36

the construct with inf.ProbModel() as m:) defining a joint distribution37

over observable and hidden variables p(w, z,x). As an example, we provide38

in Figure 2 how the model of Figure 1 would be defined in InferPy.39

1Home: inferpy.readthedocs.io; Source: github.com/PGM-Lab/InferPy

2

http://inferpy.readthedocs.io
https://github.com/PGM-Lab/InferPy


1 ## model definition ##
2 with inf.ProbModel () as model:
3

4 # prior distributions
5 with inf.replicate(size=K):
6 mu = inf.models.Normal(loc=0, scale=1, dim=d)
7 sigma = inf.models.InverseGamma (1, 1, dim=d)
8 p = inf.models.Dirichlet(np.ones(K)/K)
9

10 # define the generative model
11 with inf.replicate(size=N):
12 z = inf.models.Categorical(probs = p)
13 x = inf.models.Normal(mu[z], sigma[z], observed=True , dim=d)

Figure 2: InferPy code for the Mixture of Gaussians model of Figure 1.

InferPy allows to specify our model in a single sample-basis, resembling40

the standard plateau notation, with the with inf.replicate(size=N) con-41

struct (Line 5). The dimension N is the number of replicas of this part of42

the model. The dimension of each variable can be specified either using the43

input parameter dim (Line 6), or by the length of the distribution parame-44

ters (e.g., other InferPy variable, NumPy’s ndarray [9], a tensor or a Python45

list). For example, variable x in the previous code contains N replicas of d46

independent Gaussian distributions and, in consequence, has two dimensions47

(i.e., shape = [N, d]).48

Like in Edward, each random variable y is associated to a tensor y∗ rep-49

resenting a sample from its distribution. Note that when operating on y, the50

operation is indeed done on y∗. In the previous code, the mean (i.e., loc) of51

x is a sample from the distribution obtained by indexing mu with a sample52

from z. Any variable defined in InferPy encapsulates an equivalent one in53

Edward, which can be obtain by accessing the property dist. For simplicity,54

the user does not deal with tensor objects unless it is explicitly specified, e.g.:55

z.sample() returns an array of samples while z.sample(tf run=False) al-56

lows to obtain the equivalent (lazily evaluated) Tensor object.57

3.2. Approximate Inference58

InferPy directly relies on top of Edward’s inference engine. In particu-59

lar, InferPy inherits Edward’s approach and considers approximate inference60

solutions in which the task is to approximate the posterior with a simpler61

distribution q. Unlike Edward, InferPy offers the possibility to hide all these62

3



details about the definition of this q distribution, making the inference more63

simple for non-advanced users. Figure 4 shows the code for making inference64

in the model defined in the previous section.65

1 # compile and fit the model with training data
2 data = {x: x_train}
3 model.compile(infMethod="MCMC")
4 model.fit(data)
5 # print the posterior
6 print(model.posterior(mu))

Figure 3: Code for making inference in the Mixture of Gaussian model of Figure 2.

4. Comparison with Edward66

The analogous Edward code for defining and making inference in a mix-67

ture of Gaussians, which can be found in our online documentation2, has68

some drawbacks compared to the code in InferPy (Figures 2 and 4). First, the69

model definition is more complex because this is not done in a single-sample70

basis. This can be specially problematic when defining the dependencies71

among variables. For example, the mean of x is specified using the func-72

tion tf.gather which is not always intuitive, i.e. loc=tf.gather(mu,z).73

Secondly, Edward requires to have a strong knowledge about the inference74

algorithms for specifying all its parameters. For the running example, a q75

and g variable is defined for each latent variable in the model. For variable76

mu, this is done as follows.77

1 qmu = ed.models.Empirical(params=tf.get_variable("qmu/prm", [T,K,d],
2 initializer=tf.zeros_initializer ()))
3 gmu = ed.models.Normal(loc=tf.ones([K,d]), scale=tf.ones([K,d]))

Figure 4: Edward’s code for defining the q distribution for the model of Figure 2.

5. Conclusions78

We have briefly presented InferPy, a high-level API for probabilistic mod-79

eling built on top of Edward and Tensorflow. The use of intuitive abstractions80

2https://inferpy.readthedocs.io/en/latest/notes/inf_vs_ed.html

4

https://inferpy.readthedocs.io/en/latest/notes/inf_vs_ed.html


such as the plateau notation simplifies the task of defining complex hirearchi-81

cal probabilistic models. In the future, we aim to fully integrate InferPy with82

Keras, allowing simple probabilistic modeling with deep neural networks.83

Acknowledgements84

Authors have been jointly supported by the Spanish Ministry of Science,85

Innovation and Universities and by the FEDER under the projects TIN2015-86

74368-JIN, and TIN2016-77902-C3-3-P.87

[1] K. P. Murphy, Machine learning: A probabilistic perspective. adaptive88

computation and machine learning (2012).89

[2] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach,90

Malaysia; Pearson Education Limited,, 2016.91

[3] Z. Ghahramani, Probabilistic machine learning and artificial intelligence,92

Nature 521 (7553) (2015) 452.93

[4] A. D. Gordon, T. A. Henzinger, A. V. Nori, S. K. Rajamani, Probabilistic94

programming, in: Proceedings of the on Future of Software Engineering,95

FOSE 2014, ACM, 2014, pp. 167–181.96

[5] R. L. Wexelblat, History of programming languages, Academic Press,97

2014.98

[6] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, D. M. Blei,99

Edward: A library for probabilistic modeling, inference, and criticism,100

arXiv preprint arXiv:1610.09787.101

[7] I. Uber Technologies, Pyro deep universal probabilistic programming,102

http://pyro.ai, accessed 2017-07-31 (2017-2018).103

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,104

S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: a system for large-105

scale machine learning., in: OSDI, Vol. 16, 2016, pp. 265–283.106

[9] S. v. d. Walt, S. C. Colbert, G. Varoquaux, The numpy array: a structure107

for efficient numerical computation, Computing in Science & Engineering108

13 (2) (2011) 22–30.109

5

http://pyro.ai


Required Metadata110

Current executable software version111

Ancillary data table required for sub version of the executable software:112

(x.1, x.2 etc.) kindly replace examples in right column with the correct113

information about your executables, and leave the left column as it is.114

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version for example 1.1, 2.4 etc.
S2 Permanent link to executables of

this version
example: https :
//github.com/combogenomics/
DuctApe/releases/tag/DuctApe −
0.16.4

S3 Legal Software License List one of the approved licenses
S4 Computing platform/Operating

System
for example Android, BSD, iOS,
Linux, OS X, Microsoft Windows,
Unix-like , IBM z/OS, distribut-
ed/web based etc.

S5 Installation requirements & depen-
dencies

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

Example: http :
//mozart.github.io/documentation/

S7 Support email for questions

Table 1: Software metadata (optional)

Current code version115

Ancillary data table required for subversion of the codebase. Kindly re-116

place examples in right column with the correct information about your cur-117

rent code, and leave the left column as it is.118

6



Nr. Code metadata description Please fill in this column
C1 Current code version For example v42
C2 Permanent link to code/repository

used of this code version
For example: https :
//github.com/mozart/mozart2

C3 Legal Code License List one of the approved licenses
C4 Code versioning system used For example svn, git, mercurial, etc.

put none if none
C5 Software code languages, tools, and

services used
For example c++, python, r, etc.

C6 Compilation requirements, operat-
ing environments & dependencies

C7 If available Link to developer docu-
mentation/manual

For example: http :
//mozart.github.io/documentation/

C8 Support email for questions

Table 2: Code metadata (mandatory)

7


	Introduction
	Background
	Software Framework 
	Model Definition
	Approximate Inference

	Comparison with Edward
	Conclusions

